
NASA/CR-1998-207679

Aviation System Analysis Capability

Executive Assistant Design

Eileen Roberts, James A. Villani, Mohammed Osman, David Godso, Brent King,

and Michael Ricciardi

Logistics Management Institute, McLean, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS2-14361

May 1998



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 487-4650



Abstract

In this technical document, we describe the design developed for the Aviation

System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept

(POC). We describe the genesis and role of the ASAC system, discuss the objec-

tives of the ASAC system and provide an overview of components and models

within the ASAC system, and describe the design process and the results of the

ASAC EA POC system design. We also describe the evaluation process and re-

suits for applicable COTS software. The document has six chapters, a bibliogra-

phy, three appendices and one attachment.

.°.

111





Contents

Chapter 1 Introduction ...................................................................................... 1-1

NASA' s ROLE IN PROMOTING AVIATION TECHNOLOGY ................................................... 1-1

NASA's RESEARCH OBJECTIVE ........................................................................................ 1-2

GENESIS OF THE AVIATION SYSTEM ANALYSIS CAPABmrrY (ASAC) ............................... 1-2

GOALS OF THE ASAC PROJECT: IDENTIFYING AND EVALUATING PROMISING

TECHNOLOGIES ..................................................................................................... 1-3

APPROACH TO ANALYZING THE INTEGRATED AVIATION SYSTEM ..................................... 1-4

DOCUMENT OVERVIEW ..................................................................................................... 1-4

Chapter 2 Components of the ASAC ................................................................ 2-1

OVERVmW ........................................................................................................................ 2-1

ASAC EXECUTIVE ASSISTANT (EA) ................................................................................. 2-2

Chapter 3 ASAC Models ................................................................................... 3-1

SCHEMATIC OF ASAC MODELS AND ANALYSIS CHAINS .................................................. 3-2

Analyses Using ASAC Models .................................................................................. 3-4

ASAC Model Integration Prototype ........................................................................... 3-5

Chapter 4 Design Methodology ........................................................................ 4-1

THE DOMAIN-SPECIFIC SOVI'WARE ARCHITECTURE (DSSA) APPROACH .......................... 4-1

DSSA DESIGN TOOLS ....................................................................................................... 4-2

Unified Modeling Language ....................................................................................... 4-2

Class-Responsibility-Collaboration (CRC) Card Technique ..................................... 4-3

Design Patterns ........................................................................................................... 4-4

FURTHER READING ............................................................................................................ 4-5

Chapter 5 ASAC EA Design ............................................................................. 5-1

ASAC EA PROOF OF CONCEPT ......................................................................................... 5-1

REVIEW AND ITERATE DSSA STAGES 1 THROUGH 3 ........................................................ 5-3

DSSA Substage 2-8: Define Assumptions ................................................................. 5-3

DSSA Substage 2.9: Define Issues ............................................................................. 5-5



DSSA STAGE 4----DEVELOP DOMAIN MODELS ................................................................. 5-5

DSSA Substage 4-1: Develop CRC Cards ................................................................. 5-7

DSSA Substage 4-2: Develop the Role-Play Script ................................................. 5-11

DSSA Substage 4-3: Develop Use Case Diagrams .................................................. 5-19

DSSA Substage 4-4: Develop Interaction Diagrams ................................................ 5-20

DSSA Substage 4-5: Develop Package Diagrams .................................................... 5-29

DSSA Substage 4-6: Develop Class Diagrams ........................................................ 5-29

DSSA Substage 4-7: Develop State Diagrams ......................................................... 5-38

DSSA Substage 4-8: Develop Deployment Diagrams ............................................. 5-43

DSSA Substage 4-9: Review and Iterate .................................................................. 5-43

DSSA STAGE 5--IDENTIFY REUSABLE ARTIFACTS ......................................................... 5-43

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts .......................... 5-44

DSSA Substage 5-2: Develop Each Module ............................................................ 5-63

DSSA Substage 5-3: Requirements, Verification, and Testing ................................ 5-63

DSSA Substage 5-4: Review and Iterate .................................................................. 5-63

Chapter 6 Conclusion ........................................................................................ 6-1

Appendix A Acronyms

Appendix B Domain Dictionary

Appendix C Message Broker Evaluation Supporting Documentation

Attachment A CORBA ORB Vendor Questionnaire Responses

FIGURES

Figure 1-1. NASA's Research Objective ............................................................................... 1-2

Figure 1-2. ASAC Process ..................................................................................................... 1-3

Figure 1-3. Components of the Integrated Aviation System .................................................. 1-4

Figure 2-1. ASAC System Components ................................................................................. 2-1

Figure 3-1. Aircraft and System Technologies ....................................................................... 3-3

Figure 3-2. FAA Air Traffic Management ............................................................................. 3-3

Figure 3-3. Environment ........................................................................................................ 3-4

vi



Contents

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

3-4. General Aviation .................................................................................................. 3-4

3-5. Models Used in the ASAC Model Integration Prototype .................................... 3-5

4-1. CRC Card--Front View ...................................................................................... 4-3

4-2. CRC Card--Back View (Optional) ..................................................................... 4-3

4-3. CRC Card Process ............................................................................................... 4-4

5-1. Context Diagram .................................................................................................. 5-1

5-2. POC Implementation ........................................................................................... 5-2

5-3. Role-Play Analysis ............................................................................................ 5-11

5-4. POC Use Case Diagram .................................................................................... 5-20

5-5. Building An Analysis Sequence Diagram ......................................................... 5-21

5-6. Building An Analysis Collaboration Diagram ................................................... 5-22

5-7. Building a Model Sequence Diagram ................................................................ 5-23

5-8. Building a Model Collaboration Diagram ......................................................... 5-24

Figure 5-9. Building a DataRelationship Between an Analysis and a Model Sequence

Diagram .......................................................................................................................... 5-25

Figure 5-10. Building a DataRelationship Between an Analysis and a Model

Collaboration Diagram ................................................................................................... 5-25

Figure 5-11. Building a DataRelationship Between a Model and a Model Sequence

Diagram .......................................................................................................................... 5-26

Figure 5-12. Building a DataRelationship Between a Model and a Model

Collaboration Diagram ................................................................................................... 5-26

Figure 5-13. Building a DataRelationship Between a Model and an Analysis Sequence

Diagram .......................................................................................................................... 5-27

Figure 5-14. Building a DataRelationship Between a Model and an Analysis

Collaboration Diagram ................................................................................................... 5-27

Figure 5-15.

Figure 5-16.

Figure 5-17.

Figure 5-18.

Figure 5-19.

Figure 5-20.

Figure 5-21.

Figure 5-22.

Figure 5-23.

Running the Analysis Sequence Diagram ....................................................... 5-28

Running The Analysis Collaboration Diagram ............................................... 5-28

Package Diagram ............................................................................................. 5-29

Subject Observer Class Diagram ..................................................................... 5-30

Transformer Class Diagram ............................................................................. 5-31

Data Element Class Diagram ........................................................................... 5-36

Data Storage Class Diagram ............................................................................ 5-38

Analysis State Diagram ................................................................................... 5-39

Model State Diagram ....................................................................................... 5-40

vii



Figure5-24.DataRelationshipStateDiagram.....................................................................5-41

Figure5-25.DataElementSetStateDiagram.......................................................................5-42

Figure5-26.DataElementStateDiagram............................................................................5-42

Figure5-27.POCDeploymentDiagram..............................................................................5-43

Figure5-28.SoftwareComponents(DistributedObjects)...................................................5-45

Figure5-29.SoftwareEvaluationProcessFlowchart..........................................................5-48

Figure5-30.ProductComparisonbyCategory....................................................................5-62

FigureC-1. EvaluationTestDiagram...................................................................................C-6

TABLES

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

2-1. Proposed Development Schedule for the ASAC EA ............................................ 2-2

3-1. Contents of ASAC Model Repositories ................................................................ 3-1

4-1. DSSA Stages ......................................................................................................... 4-1

4-2. UML Diagram Definitions .................................................................................... 4-2

5-1. CRC Card for Subject Class ................................................................................. 5-7

5-2. CRC Card for Observer Class ............................................................................... 5-7

5-3. CRC Card for DataTransformer Class .................................................................. 5-7

5-4. CRC Card for Analysis Class ............................................................................... 5-8

5-5. CRC Card for AnalysisSpecification Class .......................................................... 5-8

5-6. CRC Card for Model Class ................................................................................... 5-8

5-7. CRC Card for ModelSpecification Class .............................................................. 5-9

5-8. CRC Card for DataRelationship Class .................................................................. 5-9

5-9. CRC Card for DataRelationshipSpecification Class ............................................ 5-9

5-10. CRC Card for DataElement Class .................................................................... 5-10

5-11. CRC Card

5-12. CRC Card

5-13. CRC Card

5-14. Properties

5-15. Properties

5-16. Properties

5-17. Properties

for DataElement Set Class .............................................................. 5-10

for DataConverter Class .................................................................. 5-10

for DataStorage Class ...................................................................... 5-11

and Methods for Subject Class ........................................................ 5-30

and Methods for Observer Class ...................................................... 5-30

and Methods For DataTransformer Class ........................................ 5-32

and Methods for Analysis Class ...................................................... 5-32

viii



Contents

Table 5-18.

Table 5-19.

Table 5-20.

Table 5-21.

Table 5-22.

Table 5-23.

Table 5-24.

Table 5-25.

Table 5-26.

Table 5-27.

Table 5-28.

Table 5-29.

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

and Methods for AnalysisSpecification Class ................................. 5-33

and Methods for Model Class .......................................................... 5-34

and Methods for ModelSpecification Class ..................................... 5-34

and Methods for DataRelationship Class ........................................ 5-35

and Methods for DataRelationshipSpecification Class ................... 5-35

and Methods for DataElementSet Class .......................................... 5-36

and Methods for DataElement Class ............................................... 5-37

and Methods for DataConverter Class ............................................. 5-38

Properties and Methods for DataStorage Class ................................................ 5-38

ASAC EA Services to Product Mapping .......................................................... 5-46

Candidate Message Broker Products ................................................................ 5-51

Candidate Message Broker Product Install Platforms ...................................... 5-56

Table 5-30. Evaluation Questions by Category and Subcategory ........................................ 5-58

Table 5-31. Test Response Time (ms) ................................................................................. 5-60

Table 5-32. Message Broker Evaluation Summary .............................................................. 5-61

Table C- 1. Evaluation Criteria Matrix ................................................................................ C- 17

ix





Chapter 1

Introduction
ii_i!iii!iliiiii_ii iii _iiii ! i Ui _i_i_iiili_i_!_i ili i¸iii:iii_i_iil_iiiiiiili iil _iii_ii_i_ ii _i i_ii_ii_ii_iiiiiii_iiiiiiiiii_ii_i__ii i i:!ii_!_i__ii_i!i_ii_ii__ii_ii_ii iiiii_i ii ! i i i+ii _ii_i_!ii_iiiiliili_iii_ii _ii_ii:i iili i i i_iiiiil_ii_i i_i i iiii i _ii¸_i_ii_i_ii; il_iiii__iilill _iiiiii_i_iiii_iiii_iiiiiiii_i_ii!_!i_ili:i i! _:iii__i_!_i ii iii i iiiili:i_ ! ili ! i_!+i =¸¸

NASA's ROLE IN PROMOTING AVIATION

TECHNOLOGY

The United States has long been the world's leader in aviation technology for both

civil and military aircraft. During the past several decades, U.S. firms have trans-

formed this position of technological leadership into a thriving industry with large

domestic and international sales of aircraft and related products.

Despite the industry' s historic record of success, the difficult business environ-

ment of the past several years has stimulated concerns about whether the U.S.

aeronautics industry will maintain its worldwide leadership position. Increased

competition, both technological and financial, from European and other non-U.S.

aircraft manufacturers has reduced the global market share of U.S. producers of

large civil transport aircraft and cut the number of U.S. airframe manufacturers to

only one. Order cancellations and stretch-outs of deliveries by airlines, forthcom-

ing noise abatement requirements, and environmental concerns create additional

challenges for U.S. producers and purchasers of aircraft.

The primary role of the National Aeronautics and Space Administration (NASA)

in supporting civil aviation is to develop technologies that improve the overall

performance of the integrated air transportation system, making air travel safer

and more efficient, as well as contributing to the economic welfare of the United

States. NASA conducts much of the basic and early applied research that creates

the advanced technology introduced into the air transportation system. Through its

technology research program, NASA aims to maintain and improve the leadership

role in aviation technology and air transportation held by the United States for the

last half century.

The principal NASA program supporting subsonic transportation is the Advanced

Subsonic Technology (AST) program, managed by the Subsonic Transportation

Division, Office of Aeronautics, NASA Headquarters. In cooperation with the

Federal Aviation Administration (FAA) and the U.S. aeronautics industry, the

AST program develops high-payoff technologies that support the development of

a safe, environmentally acceptable, and highly productive global air transportation

system. NASA measures the long-term success of its AST program by how well it

contributes to an increased market share for U.S. civil aircraft and aircraft compo-

nent producers and the increased effectiveness and capacity of the national air

transportation system.

1-1



NASA's RESEARCH OBJECTIVE

To meet its objective of assisting the U.S. aviation industry with the technological

challenges of the future, NASA must identify research areas that have the greatest

potential for improving the operation of the air transportation system. Therefore,

NASA seeks to develop the ability to evaluate the potential impact of various ad-

vanced technologies. By thoroughly understanding the economic impact of ad-

vanced aviation technologies and by evaluating the use of new technologies in the

integrated aviation system, NASA aims to balance its aeronautical research pro-

gram and help speed the introduction of high-leverage technologies. Figure 1-1

illustrates NASA' s research objective.

Figure 1-1. NASA's Research Objective

Advanced Subsonic Technology
program

Technology integration element

Aviation System Analysis Capability

Develop high-payoff technologies to support a
safe, environmentally acceptable, and highly
productive global air transportation system

Ensure that the technologies NASA develops are
timely and consistent with other developments in
the aviation system

Provide a capability to evaluate the potential
impacts of advanced technologies on the U.S.
economy

GENESIS OF THE AVIATION SYSTEM ANALYSIS

CAPABILITY(ASAC)

Technology integration is the element of the AST program designed to ensure that

the technologies NASA develops are timely and consistent with other develop-

ments in the aviation system. Developing an Aviation System Analysis Capability

(ASAC) is one of the objectives of the technology integration element. With this

analytical capability, NASA and other organizations in the aviation community

can better evaluate the potential economic impacts of advanced technologies.

ASAC is envisioned primarily as a process for understanding and evaluating the

impact of advanced aviation technologies on the U.S. economy. ASAC consists of

a diverse collection of models, databases, analysts, and individuals from the pub-

lic and private sectors brought together to work on issues of common interest to

1-2



Introduction

organizations within the aviation community. ASAC will also be a resource avail-

able to those same organizations to perform analyses; provide information; and

assist scientists, engineers, analysts, and program managers in their daily work.

ASAC will provide this assistance through information system resources, models,

and analytical expertise, and conducting and organizing large-scale studies of the

aviation system and advanced technologies. Figure 1-2 displays this concept.

Figure 1-2. ASAC Process

Inputs:

Databases __
Tools and models

Knowledge and

analytical methods

ASAC process

Outputs:

Policy studies

Cost-benefit analyses

Communications and

consensus building

GOALS OF THE ASAC PROJECT: IDENTIFYING AND

EVALUATING PROMISING TECHNOLOGIES

Developing credible evaluations of the economic and technological impact of ad-

vanced aviation technologies on the integrated aviation system is the principal

objective of ASAC. These evaluations will then be used to help NASA program

managers select the most beneficial mix of technologies for NASA investment,

both in broad areas, such as propulsion or navigation systems, and in more spe-

cific projects within the broader categories. Generally, engineering analyses of this

kind require multidisciplinary expertise, use several models of different compo-

nents and technologies, and consider multiple economic outcomes and techno-

logical alternatives. These types of analyses are most effective if they include

information and inputs from organizations and analysts from different parts of the

aviation community. In this way, the studies incorporate the expertise of people

around the United States and build acceptance from the start of the research effort.

In addition to identifying broad directions for investments in technology, the pro-

gram must also help researchers at NASA and elsewhere evaluate the economic

potential of alternative technologies and systems. By better informing engineers

about potential markets for technologies and data on how the current system

works, ASAC will help NASA engineers incorporate their customers' needs more

easily into their routine work. These types of problems most likely involve inves-

tigating technical designs for specific aircraft or subsystems that can readily re-

place existing equipment without requiting significant changes to other aviation

components. With such information, researchers could more easily evaluate the

utility of alternative designs and quickly estimate the value of their design con-

cepts. Analysts from industry, government, and universities would also use ASAC

in this way.

1-3



APPROACH TO ANALYZING THE INTEGRATED

AVIATION SYSTEM

The most useful aviation technologies are not necessarily the most technically ad-

vanced. Rather, NASA and industry must invest in the technologies that have the

most promising payoffs--those that clearly demonstrate a capacity for economi-

cally viable performance enhancements--from the perspective of those organiza-

tions that will purchase and operate the technologies.

Because new aviation technologies are introduced into a complex system, the po-

tential impact of any proposed technology must be analyzed from a system-wide

perspective. Otherwise, the potential impact may be overestimated or underesti-

mated because of the unexamined interdependencies with other elements of the

aviation system. Figure 1-3 shows the components of the integrated aviation sys-
tem.

Figure 1-3. Components of the Integrated Aviation System

In summary, with the ASAC, users can develop credible evaluations of the eco-

nomic and technological impact of advanced aviation technologies on all compo-

nents of the integrated aviation system.

DOCUMENT OVERVIEW

This technical document a describes the system design of the Aviation System

Analysis Capability (ASAC) Executive Assistant (EA). The document builds

upon the work presented in the National Aeronautics and Space Administrator

Contractor Report #201681, ASA C Executive Assistant Architecture Description

1-4



Introduction

Summary, Eileen Roberts and James A. Villani, April 1997, and it is composed of

the following chapters:

• Chapter 1--Introduction

• Chapter 2---Components of the Aviation System Analysis Capability

• Chapter 3--ASAC Models

• Chapter 4---Design Methodology

• Chapter 5--ASAC EA Detailed Design

• Chapter 6---Conclusion.

In Chapter 1, the genesis and role of the ASAC system is described. We discuss

the objectives of the ASAC system and provide an overview of components and

models within the ASAC system.

The Design Methodology chapter discusses the choice made for an architecture

methodology, the Domain-Specific Software Architecture (DSSA), and the DSSA

approach to developing a system design.

The next chapter, ASAC EA Detailed Design, describes the design development

process and includes the ASAC EA system design. We address each DSSA design

stages 4 and 5. DSSA stages 1 through 3 and partial stage 4 are detailed in the

ASA C Executive Assistant Architecture Description Summary referenced above.

• DSSA Stage 4---Develop Domain Models

• DSSA Stage 5--Identify Reusable Artifacts.

This document has a reference, bibliography, three appendices, and two attach-

ments:

Appendix A--Acronyms

Appendix B--Domain Dictionary

Appendix C--Message Broker Evaluation Supporting Documentation

Attachment A-- CORBA ORB Vendor Questionnaire Responses.

1-5





Chapter 2

Components of the ASAC

OVERVIEW

ASAC is a diverse collection of models, databases, analysts, and individuals from

the public and private sectors brought together to work on the issues of common

interest to organizations within the aviation community. Figure 2-1 shows the

major system components of ASAC.

Figure 2-1. ASAC System Components

Aviation System

Analysis Capability

(ASAC)

i
Model Repositories
(Local and Remote)

Document Server

i
i GrratSpha! d ] Spreadsheets

]
Data Reposilories

(Local and Remote)

Execu 'vell 1 lAssistant (First Quick Response

Generation) System (QRS)

Select and Run

Predefined

I......I'°,'yses
........ i-

Report Server Query Server

Related Web 1
Sites

• I

Document
Model Server

Server

Some ASAC system components exist; others are under development. Two

ASAC components, Related Web Sites and the Document Server are available to

the general public. All other ASAC components are available on a restricted basis.

The following sections provide a brief description of the ASAC Executive Assis-

tant as it exists today. Information about the other ASAC components can be

found in National Aeronautics and Space Administrator Contractor Report

2-1



#201680, Aviation System Analysis Capability Quick Response System Report for

Fiscal Year 1997, Eileen Roberts, James A. Villani and Paul Ritter, April 1997.

ASAC EXECUTIVE ASSISTANT (EA)

With the ASAC EA, researchers at NASA and elsewhere can quickly evaluate the

economic potential of alternative technologies and systems. By providing inputs

to and linking the many models and data that the ASAC system will comprise, the

EA will provide an intelligent interface with which the user can perform detailed

analyses. Definition of the ASAC Executive Assistant design is the focus of this

document.

Table 2-1 outlines the proposed development schedule for the EA.

Table 2-1. Proposed Development Schedule for the ASAC EA

Item Year Status

Define ASAC EA requirements

Define the ASAC EA

Develop the ASAC EA architecture

Develop the Model Integration Prototype (First Generation ASAC)

Design the ASAC EA Proof of Concept

Develop an ASAC EA Proof of Concept

Design, develop, and deploy the ASAC EA

1995

1996

1996

1996-1997

1997

1997-1998

1998-1999

Complete

Complete

Complete

Complete

Complete

Ongoing

2-2



Chapter 3

ASAC Models

The ASAC Model Integration Prototype (First Generation ASAC) demonstrates

integration of six First Generation ASAC models. This prototype was fielded in

March 1997, and is the first step in providing a robust, fully functional, ASAC

Executive Assistant.

The ASAC Model Integration Prototype (First Generation ASAC) comprises a

subset of the complete ASAC model network. NASA and others use it to perform

selected economic analysis of aircraft technology and air traffic management im-

provements.

The ASAC Model Integration Prototype (First Generation ASAC) is available to

authorized ASAC users (password protected). Users employ a World Wide Web

(WWW) browser to access the system.

At present, six models are in the ASAC Model Repositories. Four additional

models will be added to the ASAC Model Repositories shortly. The models are

listed in Table 3-1. New models will be added to the repositories as they are de-

veloped.

Table 3-1. Contents of ASAC Model Repositories

Model Operating Comment
system

Existing models

ASAC Air Carrier Investment Model Windows and
Macintosh

(Excel, Version

Available as a standalone model,
will be available via a WWVV
interface

ASAC Air Carrier Network Cost Model

ASAC Airport Capacity Model--Detroit

ASAC Airport Delay Model--Detroit

ASAC Flight Segment Cost Model
(Cost Translator)

ASAC Flight Segment Cost Model
(Mission Generator)

5.0), will be
HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWMM interface

3-1



Table 3-1. Contents of ASAC Model Repositories (Continued)

Model Operating system Comment

FY97 Models

Aircraft/ATC Functional Analysis Model

ASAC Airport Capacity Model--Atlanta

ASAC Airport Capacity Model--Dallas

ASAC Airport Capacity Model--Los Angeles

ASAC Airport Delay Model--Atlanta

ASAC Airport Delay Model--Dallas

ASAC Airport Delay Model--Los Angeles

ASAC Noise Impact Model

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

HP-UX 10.20

Windows NT
Server 4.0

Available as a standalone model

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

SCHEMATIC OF ASAC MODELS AND

ANALYSIS CHAINS

ASAC models are grouped into the following four analytical areas:

• 1.0 Aircraft and System Technologies

• 2.0 FAA Air Traffic Management

• 3.0 Environment

• 4.0 General Aviation.

Each model has a unique number. The number designates the model's analytical

area, e.g., all model numbers that begin with a 2 belong to the FAA Air Traffic

Management analytical area. The number also designates a model's position in a

logical stream. For example, a stream might comprise the following models:

2.3 ASAC Airport Capacity Model -')

2.3.2 ASAC Airport Delay Model --)

2.3.2.1 ASAC Flight Segment Cost Model--Cost Translator.

Model links for each of the four analytical areas are shown in Figures 3-1 through

3-4. Squares represent models that belong to the analytical area named in the fig-

ure title; and circles represent models that belong to a different analytical area.

3-2



ASAC Models

1.0 Aircraft

and System

Technologies

t

Figure 3-1. Aircraft and System Technologies

1.1 ACSYNT or

FLOPS

FY98

FY98

FY99

FY98

Segment Cost Segment Cost Model

Mo0el -- Mission -- COS1 Translator

Generator

FY98

1.1,2.1,1,1 ASAC

Air Carrier

Investment Model

L

1.2.1 ASAC tF _ 1.2.1.1 ASAC

1.2 STAT Regional and Regional and

FY98 Commuter Network Commuter

Cost Model Economic Model

FY00 FYO0

1.3.1 ASAC Air Cargo

Investment Model

• (indu0es old 1.3)

FY98

Figure 3-2. FAA Air Traffic Management

2.0 FAA Air

Traffic

Management

2,1,1 AireraPJATC

Functional Analysis

Model

FY97

2.2 System Safety

Tolerance Analysis

Model

FY98-9

2.3 ASAC Airport

Capacity Model

2.5 ASAC Air

Carrier Operations

Model

FY98-9

I

2.3.1 Approximate Fy_._99J 2.3.1,1 ASAC Flight

Network Delay (AND) j Segment Cost

Model -- Cost

Mode4 or LMI Network Translator
Model

FY99

J FYg9

l

2.3,2 ASAC Airport Delay I J 2.3,2.1 ASAC Flight

Model J_ J Segment Cost

Mode! -- Co_t

Translator

FY99

I= 2,5.1 ASAC Air

Carrier Cost-Benefil

Model

FY98-9

FY99

3-3



Figure 3-3. Environment

I 3.1 Model TSD

FYXX

I 3.0 Environmenl

3,2.1 ASAC Noise Impact I

Model (old 3.2.1 + old 2.4) IFY97-8

3.1.1 Global Aircrafl

Emissions Forecasting

Modal

FYXX

3.1,2 Emission and

Dispersion Modeling

System
FYXX

Figure 3-4. General Aviation

4.0 ASAC General

Aviation Economic

Model

FY00

Analyses Using ASAC Models

The above represented models can be used either alone or in combination to ana-

lyze specific AST program elements. Table 3-2 shows representative collections

of models relevant to these areas.

Table 3-2. ASAC Models Used to Analyze AST Program Elements

AST program element ASAC models

Advanced air transportation technology

Aging aircraft

Civil tiltrotor

Composites

Environmental assessment

Fly-by-tight and power-by-wire

General aviation and commuter aviation

Integrated wing

Propulsion

Terminal area productivity

ASAC Flight Segment Cost Model, ASAC Airport Capacity Model,
ASAC Air Carrier Investment Model, ASAC System Safety Tolerance
Analysis Model, National Airspace Research and Investment Model

ASAC Air Carrier Investment Model, ASAC Database

National Airspace Research and Investment Model, ASAC Database

Flight Optimization System Model, Aircraft Synthesis Model, ASAC
Air Carrier Investment Model

ASAC Flight Segment Cost Model

Flight Optimization System Model, Aircraft Synthesis Model, ASAC
Air Carrier Investment Model

National Airspace Research and Investment Model, ASAC Database

Flight Optimization System Model, Aircraft Synthesis Model, ASAC
Air Carrier Investment Model

ASAC Flight Segment Cost Model, ASAC Air Carrier Investment
Model, Flight Optimization System Model, Aircraft Synthesis Model

ASAC Airport Capacity Model, ASAC Airport Delay Model, ASAC Air
Carrier Investment Model, ASAC System Safety Tolerance Analysis
Model, National Airspace Research and Investment Model

3-4



ASAC Models

ASAC Model Integration Prototype

The ASAC Model Integration Prototype (First Generation ASAC), implemented

in March 1997, was a subset of ASAC models. ASAC models can be linked to-

gether to form analyses. Two analyses are available; they are

Aircraft Technology Analysis and

_, Air Traffic Management Analysis.

Additional analyses will be added to the ASAC Model Integration Prototype (First

Generation ASAC) as the models supporting them become available.

Figure 3-5 shows the models used in the ASAC Model Integration Prototype

(First Generation ASAC). This collection of models enables analyses of im-

provements in aircraft technology (the left-most chain in Figure 3-5) or improve-

ments in air traffic management (the right-most chain in Figure 3-5).

Figure 3-5. Models Used in the ASAC Model Integration Prototype

1.1 ACSYNT

or FLOPS

ASAC Databases I

Airline data

1.1.2 ASAC Flight
Segment Cost Model
(Mission Generator)

+
1.1.2.1 ASAC Flight Segment Cost

Model (Cost Translator)

+
4 4 el "4 4 AOAt "_ A;.#"_r_;^.

Network Cost Model

+
1.1.2.1.1.1 ASAC Air Carrier

Investment Model

Airport operati(

data

2.3 ASAC Airport
Capacity Model

2.3.2 ASAC Airport
Delay Model

1
2.3.2.1 ASAC Flight
Segment Cost Model

(Cost Translator)

3-5





Chapter 4

Design Methodology

As discussed in the National Aeronautics and Space Administrator Contractor

Report #201681, ASA C Executive Assistant Architecture Description Summary,

the Domain-Specific Software Architecture (DSSA) is being used as a design

methodology.

THE DOMAIN-SPECIFIC SOFTWARE ARCHITECTURE

(DSSA) APPROACH

A domain engineering process is used to generate a DSSA. The goal of the proc-

ess is to map user needs into system and software requirements that, based on a

set of implementation constraints, eventually define a DSSA.

There are five stages in the DSSA domain engineering process. Each stage is fur-

ther divided into steps or substages. The process is concurrent, recursive, and it-

erative. Therefore, completion requires several passes through each stage. The

five stages in the domain engineering process are described in Table 4-1.

Table 4-1. DSSA Stages

Stage

1

2

3

Title Description ASAC EA phase

Define the scope of the
domain

Define/refine domain-
specific elements

Define/refine domain-
specific design and
implementation constraints

Develop domain models
and architectures

Produce and gather reus-
able work products

Definition of what can be accom-
plished with emphasis on user needs

Similar to requirements analysis with
emphasis on the problem space

Similar to requirements analysis with
emphasis on the solution space

Similar to high-level design with
emphasis on defining module and
model interfaces and semantics

Implementation and collection of
reusable artifacts such as code and
documentation

Architecture

Architecture

Architecture

Architecture and
design

Design and
development

DSSA stages 1, 2, 3, and 4 (partial) were defined in the ASAC Executive Assistant

Architecture Description Summary. DSSA stages 4 (remainder) and 5 (partial) are

addressed in this document. The remainder of DSSA stage 5 will be addressed in

ASAC development tasks, which will be follow-on efforts to this design task.

4-1



DSSA DESIGN TOOLS

Unified Modeling Language

Object oriented design (OOD) is a development approach based on the organiza-

tion of entities that have structure and behavior. It promotes the construction of

well-defined systems and facilitates reuse and ease of modification. The Object

Modeling Technique (OMT), used to develop the ASAC Executive Assistant Ar-

chitecture Description Summary, was one method used to cover the system devel-

opment process from the conceptualization phase through implementation. The

author of OMT has collaborated with the authors of other OOD methodologies,

namely Booch and Jacobson, to create the Unified Modeling Language (UML).

UML is the successor to the past object-oriented design notations and has been

proposed as a standard to the Object Management Group (OMG). UML notation

is used to document the design. The Rational Rose visual modeling tool is used to

automate this process.

A brief description of UML diagrams is found in Table 4-2.

Table 4-2. UML Diagram Definitions

Diagram Description

Use case

Sequence

Collaboration

Package

Class

State

Deployment

Activity

Data flow

A snapshot of one aspect of a system. The sum of all use cases is the ex-
ternal picture of a system.

An interaction diagram that models message passing behavior between
objects.

An interaction diagram that models message passing behavior between
objects.

Shows a high-level picture of components (packaged classes) and the
dependencies among them.

A description of the classes in a system and the interrelationships among
them.

Shows all possible states for an object and how the object's state changes
as a result of events.

Shows the physical relationships among software and hardware
components in the delivered system.

Is a flow chart of tasks or methods on a class.

A depiction of the relationships among functions, usually within the problem
domain.

The first seven diagrams are used to represent the ASAC EA design in this docu-

ment. The other two diagrams will be used in the future (they are not required at

this point).

The methodology associated with the UML notation is called Objectory, and is

still being developed. Like UML notation, Objectory brings together the best as-

pects of the OMT, Booch, and OOSE (Jacobson) methodologies.

4-2



Design Methodology

Class-Responsibility-Collaboration (CRC) Card Technique

A technique called Class-Responsibility-Collaboration (CRC) Card is used to de-

fine the classes and class collaborations. CRC Card technique facilitates the proc-

ess of discovering the real-world objects that make up a system and its public
interfaces.

CRC cards are index cards that record

• suggested classes,

• their responsibilities,

what the classes know about themselves (knowledge responsibility)

_- what the classes do (behavior responsibility), and

• their relationship to other classes (collaboration).

CRC cards can optionally record

• class definitions and

• class attributes.

The front and optional back views of a CRC card are shown in Figures 4-1 and

4-2, respectively.

Figure 4-1. CRC Card--Front View

C I allllll i,I al m o

Superclass:
Subclass:

Responsibility 1 / Collaborative Classes

Responsibility 2 Collaborative Classes

Responsibility 3 Collaborative Classes

Figure 4-2. CRC Card--Back View (Optional)

Definition:

Attributes:

4-3



The CRC cards are used to role-play system scenarios. A person represents a class

and responds to a request from another class based upon what is written on his or

her CRC card. The role-play enables one to

• validate classes,

• ensure the identification of what the class knows and what the class does,
and

• ensure all class hierarchies are identified.

The CRC card process is depicted in Figure 4-3.

Figure 4-3. CRC Card Process

Create list of 1

scenarios from /

use cases j

Assign CRC cards

(class roles) to
team members

 iiii ii

I Play out scenarios

Correct CRC [

cards and revise _- ....

scenarios ii /

I Perform final
scenarios

Design Patterns

Design patterns record experience in designing object-oriented software by nam-

ing, explaining, and evaluating important and recurring designs in object-oriented

systems. An example of a design pattern is the Observer pattern, defined by

Gamma, et al., as "a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically."

The Observer, Flyweight, and Strategy design patterns were used in developing

the ASAC EA design.

4-4



Design Methodology

FURTHER READING

For more information on UML CRC cards and design patterns, see the following

references:

[1] Fowler, Martin and Kendall Scott, "UML Distilled--Applying the Standard

Object Modeling Language," Addison-Wesley, 1997.

[2] Rational Software Corporation UML Resource Center, "UML Document Set

Version 1.1," September 1997, http://www.rational.com/uml/references/.

[3] Bellin, David and Susan Suchman Simone, "The CRC Card Book," Addi-

son-Wesley, 1997.

[4] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, "Design

Patterns--Elements of Reusable Object-Oriented Software," Addison-

Wesley, 1995.

4-5





Chapter 5

ASAC EA Design
ii!ii!ii!ii!?ii i_i!i ii_i!!ii_iiiiiiiiiiii_iiilililiiiii_ii;iiiiiii!_iiliilii_iii)i i _:ii ii i i il ii ii _;iii ili!i ii!ii_iiii__ii!iliiiliiliiliiiiiiiiiiil!ii iiii!ili!iii!iiiiiiiii!iiiilii_ii)ii i_!iii__ii_ii__ii_iiiii_i_i!i_ii:i_ii:i:!iil!ii_iiiiiiiliil i!_ii_iiii!i i ii ! i i ii i i?iiiii_ili_i_ii_iiiiiii!ii_'iii_iiiliiiiiiiiliii!iiiii_ i_ii_ !ii_i!iii i! i i_ii!iiii _ii_iiilii ! ili ili i :ii iiii:iiiiiii!!iii i ii _iii! ¸

ASAC EA PROOF OF CONCEPT

The DSSA approach was tailored to meet the needs of the ASAC design effort.

This section discusses each of the applicable areas of the fourth and fifth DSSA

stages.

This section is built upon the ASAC Executive Assistant Architecture Description

Summary, which covered DSSA stages 1, 2, 3, and 4 (partial). It was developed to

describe the general role of the ASAC system and give a general overview of the

components of the system. A piece of the architecture, referred to as the ASAC

Executive Assistant Proof of Concept (POC), is being developed to prove the

concept of the system. Figure 5-1 shows the context diagram of the entire system.

The POC portion of the entire system is shown by the highlighted box. This

document will concentrate on the design of the POC.

Figure 5-1. Context Diagram

Templatel ..... /

Models l

TEMPLATE

DEVELOPER

5-1



The ASAC Executive Assistant POC will perform an analysis that consists of

multiple distributed models. The POC will perform the following:

• An analysis will be selected.

• The analysis will be given an input.

• The models and data relationships between the models and analysis will be
constructed.

• The models will transform their input data into output data.

• When all transformations are finished, the analysis will be complete and

the final output will be stored.

The analysis will communicate with the distributed models using Visigenic's im-

plementation of the OMG Common Object Request Broker Architecture

(CORBA) standard that makes the distributed nature of the models virtually

transparent. The actual models will be wrapped by a standard interface defined

using OMG IDL (Interface Definition Language) that allows the models to be dis-

tributed and provides clients a standard method for invoking all models. The

analysis application and the model wrappers will be developed on the HP-UX

platform using the C++ programming language. In addition, a mockup Java

Graphical User Interface (GUI) client may be developed to prototype the end-user

interface to the EA system.

Figure 5-2 shows the POC implementation. The POC analysis contains four mod-

els (MA, MB, MC, and MD), six data relationships (A, B, C, D, E, and R), and

five user inputs (X, Y, Z, F, and W). This configuration was chosen because it ex-

ercises many of the characteristics for an analysis, i.e., single and multiple data

relationships between models, single models feeding multiple models and multi-

ple models feeding single models.

Figure 5-2. POC Implementation

........... F. "x,

A= f(X. V)

X _./,' \

v I, M A "1

e-,, 1

B= I(X, Y) "-,.,

M B

• 'x //

•. , 7//

. .'"

, '1"

......... Z ,_ M C ,,I

\

"\ .1./

"" C= I(A,F)

"'" .

E)= f(A) _'"

-, ,,

MD ",, R= flC, D, E, W)

W

5-2



ASAC EA Design

REVIEW AND ITERATE DSSA STAGES 1 THROUGH 3

DSSA Substage 2-8: Define Assumptions

Additional assumptions defined during this design are as follows:

Client will use an Internet Inter-ORB Protocol (IIOP) capable browser.

When an object comes to life, it initializes itself and its parts, i.e., other

objects do not explicitly have to tell an object to "initialize." If the actions

of an object result in the creation of another object, then the "creator" ob-

ject may pass some information along to the class instance to be created,

which gives the created object some data for the initialization of this in-

stance of the object.

4, If a class A has the responsibility to "know" something, then class A has

an encapsulated data store or structure that can contain instances of the

data that it is to know. That data structure can be populated in one of three

ways:

• Some other class collaborates with Class A that results in an instance

of Class A's data structure being created (or set).

When an instance of Class A is created, Class A is smart enough to re-

trieve the information that it needs in order to populate some/all of its

encapsulated data structure.

• A combination of i and ii.

4, Models cannot commit suicide. They must be killed by some other class.

Where we refer to an "Analysis," we refer to the combination of the

Analysis and the Analysis Specification.

When we refer to a "Model," we refer to the combination of a Model and a

Model Specification. Furthermore, we do not care whether the "Model" is

a legacy model (implies wrappers) or a new model.

4, Model_Input_Data is a collection of data items. Each data item can either

be "Set" or "Unset." A model cannot run until all of its input values are

"Set." Note, NULL is a valid value for a "Set" data item.

There are three instances of Model_Input_Data that a model maintains:

• Default_Input_Data--When a model instance is created, it retrieves a

"default" set of Model_Input_Data from the Model Catalog.

5-3



• Initial_Input_Data--Model_Input_Data that is taken from the Analy-

sis Specification and the user.

Current__Input_Data--The Current_Input_Data is the intersection of

the Default_Input_Data and the Initial_Input_Data. Note, for each data

item, the value of the Inital_Input_Data overrides that of the De-

fault_Input_Data. Current_Input_Data also holds the most recent set of

data that is used for determining when a model is ready for execution.

• Models and Analyses have at least the following states:

• Not_Ready_To_Run--All Model_InputData have not been "set."

• Running--Model is executing.

• Done--Model has results available.

• Error--Model has incurred some exception.

Model_Output_Data--A collection of data items that are available from a
model when a model is in the Done state.

Model_Data_Names--Functional identifiers that categorize all data items

in the system by type and allowable conversions.

All Model_Input_Data items and Model_Output_Data items will have as-

sociated names. When a new model is added to the system, each of its

Model_Input_Data items and Model_Output_Data items will be classified

using a predefined name from an existing set of Model_Data_Names.

At some point in the future, we will have a procedure/application for

building a validated analysis specification. When we load an analysis, im-

plicit in the specification is the execution order and model-to-model rela-

tionship. This holds for the predefined analysis that we will create for the
POC.

Living models can accept Model_Input_Data from at least the following

sources:

• User

• Model Catalog

• Analysis Specification

• Another Model.

5-4



ASAC EA Design

A Model can never set another model's input data directly. Doing so

would imply that models have knowledge of other models and their rela-

tionship.

• After a Model in the "Not_Ready To Run" state receives all of its re-

quired inputs, it executes on its own volition.

After a Model has completed its execution, the model does not report its

results. The model will notify someone else in the system that it is Done.

And, that someone else will have to retrieve the results.

Is the user ever presented with Model_Input_Data that they cannot

change? No. The user may be presented with additional information spe-

cific to how the model is built or some information regarding model coef-

ficients may be made available, but all Model_Input_Data will be

modifiable by the user.

The Analysis Specification is produced independently of the execution of

the analysis, i.e., before an analysis can be executed, a completed Analysis

Specification must be available. We can then think of the execution of the

Analysis as a "batch" job.

• The system is event-driven.

DSSA Substage 2.9: Define Issues

Issues remaining from the ASAC Architecture are as follows:

• How does the EA system handle or detect nontermination of models?

• How is data passed among components? Pass data or data file name?

• Should multiple processes be spawned for the analysis application, or

should there be separate invocations of the program?

• What are the space constraints on user systems (maximum size for the user

application)?

• What is the target size of the analysis applications?

These issues will be addressed in future tasks.

DSSA STAGE 4reDEVELOP DOMAIN MODELS

The goal for this phase of the domain-engineering is to develop domain models.

This stage of the DSSA was based on OMT and has been revised to reflect the

UML notation.

5-5



Thefollowing substagesof DSSAstage4 will becompletedduringtheASAC
designeffort:

• 4-1DevelopCRCcards

• 4-2Developtherole-playscript

• 4-3Developusecasediagrams

• 4-4 Developinteractiondiagrams

Sequencediagrams

Collaborationdiagrams

• 4-5Developpackagediagrams

• 4-6Developclassdiagrams

• 4-7Developstatediagrams

• 4-8Developdeploymentdiagrams

• 4-9 Reviewanditerate

Thebeginningof thedesignphaserequiresclassesto bedefined.Theclassesex-
tractedfrom thePOCdescriptionare

• Subject,

• Observer,

• DataTransformer,

• Analysis,

• AnalysisSpecification,

• Model,

• ModelSpecification,

• DataRelationship,

• DataRelationshipSpecification,

• DataElement,

• DataElementSet,

• DataConverter,and

• DataStorage.

Moredetailon theseclasseswill beprovidedthroughouttheDSSASubstagesin
this chapter.

5-6



ASAC EA Design

DSSA Substage 4-1: Develop CRC Cards

CRC cards are a valuable object-oriented technique. They define superclasses and

subclasses, the responsibilities of each class, and the collaboration among the

classes. Tables 5-1 through 5-13 show the CRC cards for all of the classes.

Table 5-1. CRC Card for Subject Class

Subject Design Pattern: Observer (293)--Gamma, et al.

superclasses:
subclasses: DataTransformer, DataElementSet,

DataRe at onship

Description: A superclass that defines the properties of an object being observed. A subject may
have any number of dependent observers. All observers are notified when the subject undergoes a
change in state.

Know observers ObserverNotify observers when state changes

Table 5-2. CRC Card for Observer Class

I

Observer pesign Pattern:_______.__.OObserver(293)---G_amma, et al.

Superclasses:_

subclasses: ]DataTransformer, DataRelationship

Description: Defines an updating interface for objects that should be notified of changes in a sub-
ject's state. In response to notification, observers query the subject to synchronize its state with the

subject's state.

Know subject I
Know state of subject Subject

IReg ster as an observer .[Subject

Table 5-3. CRC Card for DataTransformer Class

;DataTransformer

superclasses: Subject, Observer

subclasses: Ana ys s, Model

_: Abstraction for a class that transforms input data values into output data values.

Know input data elements

Know output data elements

Notify observers when state changes

Know state

Register as an observer

Know state of input data elements

Transform input values to output values

Know Observers

DataElementSet

DataElementSet

Observer

DataElementSet

DataElementSet

DataElementSet

5-7



Table 5-4. CRC Card for Analysis Class

Analysis

superclasses: DataTransformer

subc asses:

Description: Manages the creation and instantiation of models and their relationship.

Create models and data relationships (Transform
input values to output values)

Know input data elements

Know output data elements

Know status of models

(DataTransformer) AnalysisSpeciflcation,
Model, DataRelationship

DataTransformer) DataElementSet

DataTransformer) DataElementSet

_)bserver

Table 5-5. CRC Card for AnalysisSpecification Class

AnalysisSpeclflcation

superclasses: DataStorage

subclasses:

Description: Manages specification data for a particular analysis.

Store analysis specification data

Retrieve analysis specification data

Know names of models

Know execution points

Know initial input data elements for Analysis

Know initial output data elements for each model

Know model relationships

Know data relationships (between related models)

DataStorage

DataStorage

DataElementSet

DataElementSet

Table 5-6. CRC Card for Model Class

Model

superclasses: DataTransformer

subclasses:

_: Represents the interface to a state of a model application.

Know observers

Notify observers when state changes

Know state

Register as an observer

Know state of input data elements

Create relationship between self and another instance of a model

Transform input values to output values

Know input data elements

Know output data elements

Observer

DataElementSet

DataElementSet

DataRelationship

DataElementSet

DataElementSet

ModelSpecification

5-8



Table 5-7. CRC Card for ModelSpecification Class

ASAC EA Design

ModelSpecification

superclasses:

subclasses:

Description: Manages specification data for a particular model.

DataStorage

Know model name

Know model description

Know model location

Know input file format

Know output file format

Know default data elements

Know output data elements

DataElementSet

DataElementSet

Table 5-8. CRC Card for DataRelationship Class

DataRelationahip

superclasses: Observer, Subject

subclasses:

Description: Observes a data source for changes in state. Gets data values from a model (when it
is in particular state), converts the units if needed, and sets the values in a data target.

Know input data elements

Know output data elements

Register as an observer

Know state of input data elements

Transform input data values to output data values

Know relationship between input and output data elements

Create a relationship between any DataTransformer subtype.

DataElementSet

DataElementSet

DataElementSet

DataElementSet

DataElementSet

DataTransformer

Table 5-9. CRC Card for DataRelationshipSpecification Class

DataRelationshipSpecification

superclasses: DataStorage

subclasses:

Description: Manages specification data for a particular model.

Know data relationship name

Know data relationship description

Know data relationship location

Know input file format

Know output file format

5-9



Table 5-10. CRC Card for DataElement Class

DataElement

superclasses:

subclasses:

_: A container for a piece of data.

Know data name

Know data type

Know data unit

Know data value

Convert value to a different unit

Know state (set/unset)

DataConverter

Table 5-11. CRC Card for DataElement Set Class

DataElementSet

superclasses: Subject, DataStorage

subclasses:

_: A collection of instances of DataElement.

Know observers

Notify observers when state changes

!Know number of data elements

Iterate through set of data elements

iUpdate value, state, name, type, or unit of the DataElements in a set

Add data element to the set

Know the state of the set

Observer

DataElement

Table 5-12. CRC Card for DataConverter Class

DataConverter Design Patterns: Strategy
(315), Flyweight (195)--
Gamma, et al.

superclasses:

subclasses:

Description: Defines a common interface for converting a data value from one unit to another.

Know source data unit

Know source data value

Know target data unit

Know target data value

Convert data value

5-10



ASAC EA Design

Table 5-13. CRC Card for DataStorage Class

DataStorage

superclasses:
subclasses:AnalysisSpecification,ModelSpecification,

DataRelationshipSpecification
Description: Managesstorageand retrieval of data objects.

Storedataobject Security
Retrievedata object Security

Knowstoragemethod

DSSA Substage 4-2: Develop the Role-Play Script

The role-play script used in the CRC Card technique enables the designers to talk

through different scenarios that the program will execute. This further defines the

role of each class. An example of a role-play script is shown below. This example

is a reduced version of the POC to avoid repetition, however, it demonstrates all of

the functionality of the POC design. The following is the scenario of the role-play:

Build and execute a predefined Analysis named "RP" that consists of two

known Models, named "MA" and "MB."

4, The output of "MA" is used as input to "MB."

4, There are initial values for the Analysis contained in a file "rp.val."

The results of the Analysis are written to standard output.

Figure 5-3 illustrates the Analysis generated by the role-play script.

Figure 5-3. Role-Play Analysis

A1 Input

DES

Model
MA

DataRelationship
R1

Analysis A1

_\ DataRelationship DataRelationship

Xllnput MB Output _'

A1DEsOutput]

5-11



To achieve this scenario, the steps described in the next subsections are performed.

BUILDING AN ANALYSIS (A 1)

1. Main: I request an instance of an analysis named "RP" from Analysis.

Analysis: I provide an instance of Analysis (A1).

2. Analysis (A1): I request an instance of AnalysisSpecification for "RP"

from AnalysisSpecification.

. AnalysisSpeeification: I create an instance of AnalysisSpecification

(AS1) and initialize all values by requesting AnalysisSpecification data

from DataStorage.

DataStorage: I retrieve the AnalysisSpecification data and return it to

AnalysisSpecification (ASl).

AnalysisSpecification: I return an instance of AnalysisSpeeification

(AS1) to Analysis (A1).

4. Analysis (A1): I request the input DataElementSet from my Analysis-

Specification (ASl).

AnalysisSpecification (AS1): I return my input DataElementSet.

. Analysis (A1): I clone the returned DataElementSet and make the clone

my input DataElementSet (A1 Input) and I request that it goes to the
"Unset" state.

DataElementSet (A1 Input): I go into the "Unset" state.

6. Analysis (A1): I request a copy of the output DataElementSet from my
AnalysisSpeeification.

AnalysisSpecification (ASI): I copy my output DataElementSet and re-

turn the copy.

. Analysis (A1): I take the returned DataElementSet (A1 Output) and

make it my output DataElementSet (A1 Output) and I request that it goes
to the "Unset" state.

DataElementSet I go into the "Unset" state.

8. Analysis (A1): I request to be attached as an observer to my input Data
ElementSet.

DataElementSet (A1 Input): I attach you as an observer.

5-12



BUILDINGA MODEL

1.

ASAC EA Design

9. Main: I request the input DataEiementSet from Analysis (A1).

Analysis (A1): I provide you with my input DataElementSet.

10. Main: I request the output DataElementSet from Analysis (A1).

Analysis (A1): I provide you with my output DataElementSet (A1 Input).

11. Main: I request that the Analysis (A1) input DataElementSet (A1 Input)

read values from file "rp.val."

12. DataElementSet (A1 Input): I request DataStorage to read file "rp.val."

DataStorage: I retrieve data and return it.

DataElementSet (A1 Input): I populate my values and recalculate my

state. I go to the "Set" state and notify my observers.

(MA)

Analysis (A1): Observing that my input DataElementSet (A1 Input) is in

the "Set" state, I request the name of a model from my AnalysisSpecification.

AnalysisSpedfication (AS1): There is a model named "MA."

2. Analysis (A1): I request an instance of a model named "MA" from

Model.

Model: I provide you with an instance of Model (MA).

3. Model (MA): I request an instance of a ModelSpecification for "MA"

from ModelSpecification.

4. ModelSpecification: I create an instance of ModelSpecification (MSA)

and request ModelSpecification data from DataStorage.

DataStorage: I retrieve ModelSpecification data and return it.

ModelSpecification: I provide Model (MA) with an instance of Model-

Specification (MSA).

5. Model (MA): I request my input DataElementSet from my ModelSpeci-

fication (MSA).

ModelSpecification (MSA): I return my input DataEiementSet.

6. Model (MA): I clone the returned DataElementSet and make it my input

DataElementSet (MA Input). I request that it go to the "Unset" state.

5-13



DataElementSet (MA Input): I go to the "Unset" state and notify my ob-
servers.

7. Model (MA): I request my output DataElementSet from my Model-

Specification (MSA).

ModelSpeeification (MSA): I return my output DataElementSet and re-

turn the copy.

8. Model (MA): I clone the returned DataElementSet and make it my output

DataElementSet (MA Output) and request that it go to the "Unset" state.

DataElementSet (MA Output): I go to the "Unset" state.

9. Model (MA): I request to be attached as an observer to my input DataE-
lementSet.

DataElementSet (MA Input): I attach you as an observer.

BUILDING ANOTHER MODEL (MB)

1. Analysis (A1): Observing that my input DataElementSet is in the "Set"

state, I request the name of a model from my AnalysisSpecification.

AnalysisSpecification (AS1): There is a model named "MB."

2. Analysis (A1): I request an instance of a model named "MB" from Model.

Model: I provide you with an instance of Model (MB).

3. Model (MB): I request an instance of a ModelSpecification for "MB"

from ModelSpecifieation.

4. ModelSpecification: I create an instance of ModelSpecification (MSB)

and request ModelSpecification data from DataStorage.

DataStorage: I retrieve your ModelSpecification data and return it to you.

ModelSpecification: I provide Model (MB) with an instance of Model-

Specification (MSB).

5. Model (MB): I request my input DataElementSet from my ModelSpeci-

fication (MSB).

ModelSpecification (MSB): I return my input DataElementSet.

Model (MB): I clone the returned DataElementSet and make it my input

DataElementSet (MB Input). I request that it go to the "Unset" state.

5-14



ASPIC EA Design

DataElementSet (MB Input): I go to the "Unset" state and notify my ob-

servers.

6. Model (MB): I request my output DataElementSet from my ModelSpeei-

fication.

ModelSpeeification (MSB): I return my output DataElementSet.

7. Model (MB): I clone the returned DataElementSet and make it my output

DataElementSet (MB Output) and request that it go to the "Unset" state.

DataElementSet (MB Output): I go to the "Unset" state.

8. Model (MB): I request to be attached as an observer to my input DataE-

lementSet.

DataElementSet (MB Input): I attach you as an observer.

BUILDING DATARELATIONSHIP (R 1)

1. Analysis (A1): I request the names of 2 data-related objects from my

AnalysisSpecification.

AnalysisSpecification (AS1): There is a data relationship between Analy-

sis (A1) and Model (MA).

2. Analysis (A1): I request an instance of a DataRelationship named R1

between Analysis (A1) and Model (MA).

DataRelationship: I provide an instance of a DataRelationship (R1).

3. DataRelationship (R1): I request an instance of a DataRelationship-

Specification for Analysis (A1) and Model (MA).

4. DataRelationshipSpecification: I create an instance of DataRelation-

shipSpecification (RS1) and request default data from DataStorage.

DataStorage: I retrieve DataRelationshipSpecification data and return it.

DataRelationshipSpeeification: I return the instance of DataRelation-

shipSpecification (RS1).

5. DataRelationship (R1): Knowing that Analysis (A1) is a parent and

Model (MA) is a child, I ask Analysis (A1) for its input DataElementSet.

Analysis (A1): I provide my input DataElementSet (A1 Input).

5-15



DataRelationship (R1): I set my input DataElementSet (R1 Input) to
the returned DataElementSet.

6. DataRelationship (R1): Knowing that Model (MA) is a child of Analysis

(A1), I ask Model (MA) for its input DataElementSet.

Model (MA): I provide my input DataElementSet (MA Input).

DataRelationship (R1)" I set my output DataElementSet (R1 Output) to
the returned DataElementSet.

7. DataRelationship (R1): I request to be attached as an observer to my in-

put DataElementSet.

DataElementSet (R1 Input): I attach you as an observer.

8. DataRelationship (R1): I request the state of my input DataElementSet.

DataElementSet (R1 Input): I am in the "Unset" state.

BUILDING ANOTHER DATARELATIONSHIP (R2)

1. Analysis (A1): I request the names of 2 data-related objects from my

AnalysisSpeeifieation.

AnalysisSpecifieation (AS1): There is a data relationship between Model

(MA) and Model (MB).

2. Analysis (A1): I request an instance of a DataRelationship named R2

between Model (MA) and Model (MB).

DataRelationship: I provide an instance of DataRelationship (112).

3. DataRelationship (R1): I request an instance of DataRelationshipSpeci-

fication for Model (MA) and Model (MB).

. DataRelationshipSpecification: I create an instance of DataRelation-

shipSpecification (RS2), and request DataRelationshipSpecification

data from DataStorage.

DataStorage: I retrieve the DataRelationshipSpecification data and re-

turn it to you.

DataRelationshipSpeeification: I return the instance of DataRelation-

shipSpeeification (RS2).

5-16



ASAC EA Design

. DataRelationship (R2): Knowing that Model (MA) and Model (MB) are

children of the same parent, I ask Model (MA) for its output DataEie-
mentSet.

Model (MA): I provide my output DataElementSet (MA Output).

DataRelationship (R2): I set my input DataEiementSet (R2 Input) to

the returned DataElementSet.

. DataRelationship (R2): Knowing that Model (MA) and Model (MB) are

children of the same parent, I ask Model (MB) for its input DataEle-

mentSet.

Model (MB): I provide my input DataElementSet (MB Input).

DataRelationship (R2): I set my output DataEiementSet (R2 Output) to
the returned DataElementSet.

7. DataRelationship (R2): I request to be attached as an observer to my in-

put DataElementSet.

DataElementSet (R2 Input): I attach you as an observer.

8. DataRelationship (R2): I request the state of my input DataElementSet.

DataElementSet (R2 Input): I am in the "Unset" state.

BUILDING ANOTHER DATARELATIONSHIP (R3)

1. Analysis (A1): I request the names of 2 data-related objects from my

AnalysisSpecification.

AnalysisSpecification (AS1): There is a data relationship between Model

(MB) and Analysis (A1).

2. Analysis (A1): I request an instance of a DataRelationship named R3

between Model (MB) and Analysis (A1).

DataRelationship: I provide an instance of DataRelationship (R3).

3. DataRelationship (R3): I request an instance of DataRelationshipSpeci-

fication for Model (MB) and Analysis (A1).

. DataRelationshipSpecification: I create an instance of DataRelation-

shipSpecification (RS3) and request DataRelationshipSpecification data

from DataStorage.

5-17



DataStorage: I retrieve the DataRelationshipSpecification data and re-

turn it to you.

DataRelationshipSpecification: I return the instance of DataRelation-

shipSpecification (RS3).

5. DataRelationship (R3): Knowing that Model (MB) is a child of the par-

ent Analysis (A1), I ask Model (MB) for its output DataElementSet.

Model (MB): I provide my output DataElementSet (MA Output).

DataRelationship (R3): I set my input DataElementSet (R3 Input) to
the returned DataElementSet.

6. DataRelationship (R3): Knowing that Analysis (A1) is a parent and

Model (MB) is a child, I ask Analysis (A1) for its output DataElementSet.

Analysis (A1): I provide my output DataElementSet (A1 Output).

DataRelationship (R3): I set my output DataElementSet (R3 Output) to
the returned DataElementSet.

7. DataRelationship (R3): I request to be attached as an observer to my in-

put DataElementSet.

DataElementSet (R3 Input): I attach you as an observer.

8. DataRelationship (R3): I request the state of my input DataElementSet.

DataElementSet (R3 Input): I am in the "Unset" state.

Analysis (A1): I request the names of 2 more data-related objects from my

AnalysisSpecification.

AnalysisSpecification (AS1): There are no more data-related objects.

RUNNING THE ANALYSIS (A I)

I. DataRelationship (R1): Observing that my input DataElementSet is in

the "Set" state, I transform my input DataElementSet values and apply

them to my output DataElementSet.

2. DataElementSet (R1 Output): I update my values and reevaluate my

state. I change to the "Set" state and notify my observers.

3. Model (MA): Observing that my input DataElementSet is in the "Set"

state, I change to "Running" state, I transform my input DataElementSet

5-18



ASAC EA Design

values and apply them to my output DataElementSet, and change to the
"Done" state.

4. DataEiementSet (MA Output): I update my values and reevaluate my

state. I change to the "Set" state and notify my observers.

. DataRelationship (R2): Observing that my input DataElementSet is in

the "Set" state, I transform my input DataElementSet values and apply

them to my output DataElementSet.

6. DataElementSet (R2 Output): I update my values and reevaluate my

state. I change to the "Set" state and notify my observers.

. Model (MB): Observing that my input DataElementSet is in the "Set"

state, I change to "Running" state, I transform my input DataEiementSet

values and apply them to my output DataElementSet, and change to the
"Done" state.

8. DataElementSet (MB Output): I update my values and reevaluate my

state. I change to the "Set" state and notify my observers.

. DataRelationship (R3): Observing that my input DataElementSet is in

the "Set" state, I transform my input DataElementSet values and apply

them to my output DataElementSet.

DataEiementSet (R3 Output): I update my values and reevaluate my

state. I change to the "Set" state and notify my observers.

Main: While polling the state of Analysis (A1) output DataElementSet

(A1 Output) I see that the output DataElementSet (A1 Output) is now

"Set." I request that its output be written.

DataElementSet (R3 Output): I write my values.

DSSA Substage 4-3: Develop Use Case Diagrams

Use Case diagrams are used to show a typical interaction between a user and the

system. The Use Case diagram for the POC is shown in Figure 5-4. It illustrates

that a user will be able to choose an analysis, run an analysis, and obtain the re-

suits from the analysis.

5-19



Figure 5-4. POC Use Case Diagram

Choose _ _- _.__

uain \. -_

Return results _--- _....

Run analysis

DSSA Substage 4-4: Develop Interaction Diagrams

Interaction diagrams are diagrams that describe how groups of objects collaborate.

These diagrams usually capture the behavior of a single Use Case. The two types

of Interaction diagrams are sequential diagrams and collaboration diagrams. Se-

quential diagrams and Collaboration diagrams give the same temporal informa-

tion, but are shown in two different ways. Objects in a sequence diagram are

shown as a box with a dashed line below it that represents the objects lifeline.

Each message is represented by an arrow between two lifelines. Objects in a col-

laboration diagram are shown as icons and the message is represented by arrows
between two icons.

BUILDING AN ANALYSIS

Refer to the role-play script Building an Analysis (A1) when viewing Figure 5-5
and 5-6.

5-20



ASAC EA Design

Figure 5-5. Building An Analysis Sequence Diagram

Q

//"_',\\

_-,_1 -_VSiS- [ _ AI_: Data Storacle i: Main L-_ficalion , _err_ntSet DataElementSet D_aStoraRe i

I

I

A1 : Analysis
i i

I
1: Create ()

i

:1
9:_*tOutputDES() L

10: getlnptaDES ( ) :

I

I

I

'r 3: Retdeve ( )

5-21



Figure 5-6. Building An Analysis Collaboration Diagram

i A1 Output : DataElementSei

I
1

AI
7: SetStateUn_t ( )i

i .

i A1 : Anal_is_
- i|

1

10: getlnp_DES ( )_
9: getOutputDES ( )

1 : Create ( )

2: Create ( )

4: getlnputDES ( )
6: getOutputDES ( )

-9 I II

i AS1 : AnalysisSoecification I
I

i

11 : Retrieve ( )

8: RegisterAsObserver (inputDES)

5:_SetStateUnset ( ) _ @i 3: Retrieve ( )

[ Data Stomoe : DataStoraae i

I" r'12: Retrieve ( ) I

/A1 Inout : DataElementSet

l

BUILDING A MODEL

Refer to the role-play script Building a Model (MA) when viewing Figures 5-7
and 5-8.

5-22



ASAC EA Design

Figure 5-7. Building a Model Sequence Diagram

ii

7F--

I I ;

I i i

I I
3: Create { ) I

I rl t - + ,:R%..,!

6: SelStateUnset ( )

7: .etOutputDES ()_,_l ! I I

18: SetSt.teUnset () I _=1

9: RegisterAsObserver (inputDES)

! i ->" i

t

12: Retrieve (

I
I

17: RegisterAsObserver ( )

i : I

i 1 I

I

I
I

13: getlnputDES ( )

r 1 14: SetStateUnsetI I I
15: gatOutputDES ( )

. 16: SetStateUnsat ( )

W I

I

I

i I
I i

I

I

i

5-23



Figure 5-8. Building a Model Collaboration Diagram

6:SetStateUnset( )

9: Register_ (inputDES) 3: Create ( )MA Input: DataBernentSet < 5:gettnputDES ( )

IMA_: t_ame_r.S_ <
8: SetStateUnset( )

4_
2: Create (!

I AS1 - Analysi_ication _
L .- .j

1:Geff,,/bdetName( )

I IVISA:IVbdelSpedfication ]

I

:4. Retrieve()V

; _/1_.Create ( ) A

17:Register_ () 12:.R_rieve()
- ,14:SetStateUnset()

Rnput:c_aementseti < _ ,

• 16:SetStateUnset ( ) 11: Create ( )
13:getlnputDES ( )

15: getOutputDES( )

BUILDING A DATARELATIONSHIP BETWEEN AN ANALYSIS AND A MODEL

Refer to the role-play script Building a DataRelationship (R1) when viewing

Figures 5-9 and 5-10.

5-24



ASAC EA Design

Figure 5-9. Building a DataRelationship Between an Analysis and

a Model Sequence Diagram

A_ i Ana_s 1
J

J 1: GetFlelationshipName ( ) J

1

2: Create ( ) !

I

!

i

E:_ 5:g,.,ooutoEs(_ ]_

I
,L

-!

- ASI_ --I _l:Data i _RSi:DataRelati°nshlp I[ MA:Model ] IAl_n_ata ] [DataSto_ I

3: Create ( )

4: Retrieve ( )

I
I

6: getlnputOES ( ) _'

7: RegisterAs(7oserver ( )

8: GetState ( )

Figure 5-10. Building a DataRelationship Between an Analysis and

a Model Collaboration Diagram

1 : GetRelationshipName ( )

l A1 : Analysis J _ I AS ! _ Analysisspecificat,0 n

5: getlnputDES ( ) : Create ( )

6: getlnputDES ( )

LR_! DataReiat,o?sh,=pt _" [.M,: Mod_

7: Re.qisterAsObserver ( )

8: GetState ( ) I/

j A1 InPut : DataElementSet

3: Create ( )

Data Storage : DataStorage

A
4: Retrieve ( )

I

RS1 : DataRelationshipSpecitication

5-25



BUILDING A DATARELATIONSHIP BETWEEN TWO MODELS

Refer to the role-play script Building A DataRelationship (R2) when viewing

Figures 5-11 and 5-12.

Figure 5-11. Building a DataRelationship Between a Model and

a Model Sequence Diagram

i

1 : GetRelationshiDName ( )

ii L
! 2:Create( )

i ....

5: getlnputDES ( )

i

I
/ ]

4: RE,trlov@ ( )

1

6: getOutputDES ( )

I

I 7: Reg_terAsObs_rver ()

'l
8: GetState ( )

I

I

I

I

!

J

-%

Figure 5-12. Building a DataRelationship Between a Model and

a Model Collaboration Diagram

5: getlnputDES ( )

4: Retrieve ( )

RS2: DataRel-ationshioSoeqlftf_t_n .... _ --_'__ .......(Data Storage : DataStoraoe
!

iMS.'M_, ?
i
L

R2 : DataRelationship

2: Create ( )

i i1: GetRelaUonshipName ( )

7: RegisterAsObserver ( )8: GetState ( )

[ MA Out0ui iDataElementSet- - !

5-26



ASAC EA Design

BUILDING A DATARELATIONSHIP BETWEEN A MODEL AND AN ANALYSIS

Refer to the role-play script Building A DataRelationship (R3) when viewing

Figures 5-13 and 5-14.

Figure 5-13. Building a DataRelationship Between a Model and

an Analysis Sequence Diagram

F
A1 : Analysis / _AS1 : Analysis

Specification

1 : GetRelationshipName ( )

!]i

l 2: Create ( )

I
i

i

6: getOutputDES ( )

_R3:Oaia ![R_S3:DataRelationsh_ MB:Model I MBOutput:Data_ [_ataStoraqe:

! Relationship / Specification ]1 L ElementSet : DataStorage
i

i !

>i i

3: Create ( )

u
; 4: Retrieve ( )

I
I

5: getOutputDES ( )

[

7: RegisterAsObserver ( )

I

I 8:GetState () ....... _i
[

I

I

I

Figure 5-14. Building a DataRelationship Between a Model and

an Analysis Collaboration Diagram

4: Retrieve ( )

I RS3iDataReIa'b°nshIpSpecIl=ti°n "" I ..... _ - DataSt°rage:DataSt°rage -

T

3: Create ( ) A 7: RegisterAsObsefver ( )

2: Create () _ 8: GetStzt_,( ) = _

- _ -1:13 -DataRelationship - _MB Ou_ut : DataElementSet

6: getOutputDES ( ) i

1:G.R.atO°  ipN. o*,i 5:,atOu  DES,,i v

i 0 l

5-27



RUNNINGTHE ANALYSIS

Refer to the role-play script Running the Analysis (A1) when viewing Fig-
ures 5-15 and 5-16.

Figure 5-15. Running the Analysis Sequence Diagram

_n

i

i
_F

I

I

i L.
)

F

1 : oadamDlltllElemonl ( )

L)

I
I

3: Utx_amDa=Eklcnent ( )

4: NonfyS_ ( )

5: UltXmmDatliEl=m_ent ( I

7: UpdatDDstaEIomerd ( )

a: _/a_taca_ ( )

[_ .........

9: Upc_aloDataElement I )

10: Store ( ) !

Figure 5-16. Running The Analysis Collaboration Diagram

i

10: Store ( )

._ L t
: R1 _ut : DataElementSel )

L ..... I

12 NotifyStateChange ( )

V

I1: UpdateDataElement ( )

V

3: UpdateDataElement ( )

' R3: DataRelationshio ] fMB Otrmut : DataElementS(_l !

8: NotifyStateChange ( )

/_7: UpclateDataElement ( )

9: UpdateDataElement ( ) _ 1

• N2 (_tDut : DataElament,_t I

1 l

L _----

A
: ! 5: UpdateDataElement ( )

4:
NotifyStale(.;_ange-- ( ) : . . .

. MA Outout : DataElamentSet :

5-28



ASAC EA Design

DSSA Substage 4-5: Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes

large, it is convenient to separate groups of classes into separate packages. The

POC design has been divided into four class packages:

• Subject Observer package

• Transformer package

• Data Element package

• Data Storage package.

Figure 5-17 shows the POC package diagram. The dependencies among the

classes are denoted by the dashed lines. These dependencies are the following:

• The Data Elements package depends on the Data Storage package to store

and retrieve input and output data.

• The Transformer package depends on the Data Storage package to store

and retrieve specification data.

• The Transformer package depends on the Data Elements package to sup-

ply DataElements for its transformers.

Figure 5-17. Package Diagram

i
Data storage / Subject observer

package _ package

Data elements _ Transformer
package _:_-- -- i package

I '

DSSA Substage 4-6: Develop Class Diagrams

Class diagrams are used to illustrate class models and their relationships with

other classes. The class diagrams will be shown in accordance with their package.

SUBJECT OBSERVER PACKAGE

The Subject Observer package contains the Subject class and Observer class. The

Subject Observer class diagram indicates that one subject will be observed by zero

or more observers. The class diagram is shown in Figure 5-18.

5-29



Subject

Figure 5-18. Subject Observer Class Diagram

F Subject
! dt;-observerList

q'RegisterAsObserver( )

_l Observed By _ _ Observer

._ subjectList

0..* I *NotifyStateChange( )

The subject is a superclass that defines the properties of an object being observed.

A subject may have any number of dependent observers. All observers are notified

when the subject undergoes a change in state. A list of properties and methods for
this class can be found in Table 5-14.

Table 5-14. Properties and Methods for Subject Class

Private Properties

observerList: I The observerList attribute is a list of Observers.

Public Methods

RegisterAsObserver 0 The RegisterAsObserver operation is used to allow subjects
to register as observers.

Observer

The Observer defines an updating interface for objects that should be notified of

changes in a subject's state. In response to notification, observers query the sub-

ject to synchronize its state with the subject's state. A list of properties and meth-
ods for this class can be found in Table 5-15.

Table 5-15. Properties and Methods for Observer Class

Private Properties

subjectList

Public Methods

NotifyStateChange 0

I The subjectList attribute is a list of subjects.

The NotifyStateChange operation is used to notify Observers of astate change in a Subject.

TRANSFORMER PACKAGE

The Transformer package contains the associations between the data transformers,

i.e., the Analysis, Models and DataRelationships, and their specifications. The

Transformer class diagram is shown in Figure 5-19. The Subject, Observer Data

Storage, and DataElementSet classes are shown in this package to illustrate their

relationship with the transformers and their specifications. They are not a part of

5-30



ASAC EA Design

the Transformer Package. All DataTransformers inherit from the Subject and Ob-

server classes. The Analysis is composed of many other Analysis, Models, and

DataRelationships. Each Analysis, Model, and DataRelationship requests infor-

mation containe in their AnalysisSpecification, ModelSpecification and DataRe-

lationshipSpecification respectively. All specifications use DataStorage to store

and retrieve their contents. The input DataElementSet is transformed by the Data-

Transformers and the output DataElementSets are set by the Data Transformers.

Figure 5-19. Transformer Class Diagram

i DataElementSet

= (from Data Elements Package)

;_numberOfElements

j_state

i-
*RegisterAsObserver( )

_AddDataElement( )

'_DeleteDataElement( )

_GetNumberOfElements( )

_UpdateDataEiement( )

'=SetStateU nset( )

'=GetState( )

_*EvaluateState( )

i ..................

I OataStorage I

(from Data Storage Package) |

Bu.e= " I O_server I
(from Subject Observer Package) Observed By __ (from Subject Observer Package)

_RegisterAsObserver( )

r L_

/[ DataTmnsform;r I

_oPP utDES out_ut Set By [_relationshipName "

input Transformed By _ " - _ I "

- - "_':_ _Create( ) | I *Create( )

output Ser uy | _gatlnputDES( ) _ [

_'_ =_getOutputDES( )/ '[i: 1

I , /

_ A'na!ys
Model "_analysisName |_,modeIName

[ "Create( ) 'bcre';ei ) _]"

_1 1 Fl_luests

1 1*Store( )
I

_Retdeve( )
i Requests Requests

ModelSpecification AnalysisSpecffication DataRelationshipSpecificatiom

m_m_elProxyintedace _nnumberOfMode/aames _macro

'_modelName _ll_nu m berOfRelationshipNa mes _l_relationshipName
'_inputDES _modelNames

_outputDES "t_reletionshipNemes _Create( )

4banalys_sName "GetMacro( )

tCreate( ) _inputDES *SetMacre( )

_GetModelName( ) /_outputDES '_GetRelationshipName( )

*SetModelName( ) _SetRelationshipName( )

P'GetModelPrexylnterface( ) *Create( ) _Store( )

_SetModetPrexylnterface( ) _GatModelName( ) _Retrieve( )

tStore( ) _SetModelName( )

*Retrieve( ) '_GetRelationshipName( )

'=getlnputDES( ) _SetRelationshipName( )

_getOutputDES( ) *GetNumberOfModels( )

_SetlnputDES( ) _SetNumberOfModels( )

_SetOutputDES( ) _'GetNumberOfReletionships( )

_'SetN um berOfRelationships( )

_GetAnalysisName( )

_ _ __ aSetAnalysisName( )

_Store( )

*Retrieve( )

'_getlnputDES( )

*getOutputDES( )

_SetlnputDES( )

, _SetOutputDES( )

5-31



DataTransformer

The DataTransformer is an abstraction for a class that transforms input data values

into output data values. A list of properties and methods for this class can be

found in Table 5-16. The DataTransformer inherits from the Subject and Observer

classes, so it also contains the properties and methods shown in Tables 5-14 and

5-15.

Table 5-16. Properties and Methods For DataTransformer Class

Private Properties

state

InputDES

The state attribute defines the state of the DataTransformer.

The inputDES attribute contains the input DataElementSet of the
DataTransformer.

The outputDES attribute contains the output DataElementSet of the
DataTransformer.

OutputDES

Public Methods

Create () The Create operation is used to create a DataTransformer

getlnputDES 0 The getlnputDES operation is used to get the input DataElementSet.

getOutputDES 0 The getOutputDES operation is used to get the output
DataElementSet.

Analysis

The Analysis class manages the creation and instantiation of models and their data

relationships. A list of properties and methods for this class can be found in Ta-

ble 5-17. The Analysis class inherits from the DataTransformer class, so it also

contains the properties and methods shown in Tables 5-14, 5-15, and 5-16.

Table 5-17. Properties and Methods for Analysis Class

Private Properties

analysisName I The analysisName attribute contains the name of the analysis.

Public Methods

() I The Create operation is used to create the analysis.Create

AnalysisSpecification

The AnalysisSpecification manages specification data for a particular analysis. A

list of properties and methods for this class can be found in Table 5-18.

5-32



ASAC EA Design

Table 5-18. Properties and Methods for AnalysisSpecification Class

Private Properties

numberOfModelNames

numberOfRelationshipNames

modelNames

relationshipNames

analysisName

inputDES

outputDES

The numberOfModelNames attribute contains the number of

Models in the Analysis.

The numberOfRelationshipNames attribute contains the num-
ber of DataRelationships in an Analysis.

The modeINames attribute contains the names of Models in the

Analysis.

The relationshipNames attribute contains the names of

DataRelationships in the Analysis.

The analysisName attribute contains the analysis name.

The inputDES attribute contains the input DataElementSet for

the Analysis.

The outputDES attribute contains the output DataElementSet
for the Analysis.

Public Methods

Create 0

GetModelName 0

SetModelName 0

GetRelationshipName 0

SetRelationshipName 0

GetNumberOfModels 0

SetNumberOfModels 0

GetN umberOfRelationships 0

SetNumberOfRelationships 0

GetAnalysisName 0

SetAnalysisName 0

Store 0

Retrieve 0

getlnputDES 0

getOutputDES 0

SetlnputDES 0

SetOutputDES 0

The Create operation is used to create the
AnalysisSpecification.

The outputDES operation is used to get Model names from the

Analysis.

The SetModelName operation is used to set the Model names

in an Analysis.

The GetRelationshipName operation is used to GetDataRela-

tionship names from the Analysis.

The SetRelationshipName operation is used to set the
DataRelationship names in an Analysis.

The GetNumberOfModels operation is used to get the number

of Models in an Analysis.

The SetNumberOfModels operation is used to set the number
Models in an Analysis.

The GetNumberOfRelationships operation is used to get the
number of DataRelationships in an Analysis.

The SetNumberOfRelationships operation is used to set the
number of DataRelationships in an Analysis.

The GetAnalysisName operation is used to get the Analysis
name.

The SetAnalysisName operation is used to set the Analysis
name.

The Store operation is used to store the contents of the
AnalysisSpecification.

The Retrieve operation is used to retrieve the contents of the

AnalysisSpecification.

The getlnputDES operation is used to get the Input
DataElementSet for the Analysis.

The getOutputDES operation is used to get the output
DataElementSet for the Analysis.

The SetlnputDES operation is used to set the input Data
ElementSet for the Analysis.

The SetOutputDES operation is used to set the output Data

ElementSet for the Analysis.

5-33



Model

The Model class represents the interface to a state of a model application. A list of

properties and methods for this class can be found in Table 5-19. The Model class

inherits from the DataTransformer class, so it also contains the properties and
methods shown in Tables 5-14, 5-15, and 5-16.

Table 5-19. Properties and Methods for Model Class

Private Properties

modelName I The modelName attribute contains the Model name.
m

Public Methods

Create 0 I The Create operation is used for creating the Model.

ModelSpecification

The ModelSpecification manages specification data for a particular model. A list

of properties and methods for this class can be found in Table 5-20.

Table 5-20. Properties and Methods for ModelSpecification Class

Private Properties

modelProxylnterface

modelName

inputDES

outputDES

The modelProxylnterface attribute contains the proxy interface.

The modelName attribute contains the model name.

The inputDES attribute contains the Models input DataElementSet.

The outputDES attribute contains the Models output
DataElementSet.

Public Methods

Create 0

GetModelName 0

SetModelName 0

GetModelProxylnterface 0

SetModelProxyl nterface 0

Store 0

Retrieve 0

GetlnputDES 0

GetOutputDES 0

SetlnputDES 0

SetOutputDES 0

The Create operation is used to create the ModelSpecification.

The GetModelName operation is used to get the Model names.

The SetModelName operation is used to set the Model names.

The GetModelProxylnterface operation is used to get the Model
proxy.

The SetModelProxylnterface operation is used to set the Model
proxy.

The Store operation is used to store the contents of the
ModelSpecification.

The Retrieve operation is used to retrieve the contents of the
ModelSpecification.

The GetlnputDES operation is used to get the input
DataElementSet for the Model.

The GetOutputDES operation is used to get the output
DataElementSet for the Model.

The SetlnputDES operation is used to set the input
DataElementSet for the Model.

The SetOutputDES operation is used to set the output
DataElementSet for the Model.

5-34



ASA C EA Design

DataRelationship

The DataRelationship class observes a data source for changes in state, gets data

values from a model (when it is in particular state), converts the units if needed,

and sets the values in a data target. A list of properties and methods for this class

can be found in Table 5-21. DataRelationship inherits from the Subject and Ob-

server classes, so it also contains the properties and methods shown in Ta-

bles 5-14 and 5-15.

Table 5-21. Properties and Methods for DataRelationship Class

Private Properties

I The relationshipName attribute contains the DataRelationship name.relationshipName

Public Methods

Create 0 I The Create operation is used to create the DataRelationshipSpecification.
l

DataRelationshipSpecification

The DataRelationshipSpecification manages specification data for a particular

data relationship. A list of properties and methods for this class can be found in

Table 5-22.

Table 5-22. Properties and Methods for DataRelationshipSpecification Class

Private Properties

macro

relationshipName

The macro attribute contains the macro used by the DataRelationship.

The relationshipName contains the name of the DataRelationship.

Public Methods

Create 0

GetMacro 0

SetMacro 0

GetRelationshipName 0

SetRelationshipName 0

Store 0

Retrieve 0

The Create operation is used to create the
DataRelationshipSpecification.

The GetMacro operation is used to get the macro for the
DataRelationship.

The SetMacro operation is used to set the macro for the
DataRelationship.

The GetRelationshipName operation is used to get the name of the
DataRelationship.

The SetRelationshipName operation is used to set the name of the
DataRelationship.

The Store operation is used to store the contents of the
DataRelationshipSpecification.

The Retrieve operation is used to retrieve the contents of the
DataRelationshipSpecification.

DATA ELEMENT PACKAGE

The Data Element package contains the associations between the DataElements,

the DataConverter, and the DataElementSet. This class diagram can be shown in

5-35



Figure 5-20. The DataStorage and Subject classes are shown in this package to

illustrate their relationship to the DataElementSet. These classes do not belong to

this package. The class diagram illustrates that the DataElementSet contains zero

to many DataElements. Each DataElement has zero to many DataConverters for
conversion of their units.

Figure 5-20. Data Element Class Diagram

DataConverter
Q_sourceDataUnit

I_sourceDataValue
!41_targetDataUnit
_targetDataValue

_ConvertData( )
I

<coovo   
)..* 11

! DataStorage --1

(from Data Storage P=ackage)

"Store() i

/ _Retrieve( ) /

DataElement
_name

_type
_unit
_,state
_value

_SetState( )
_GetState( )
*SetValue( )
_GetValue( )
_SetName( )
_GetName( )
_SetType( )
'bGetType( )
_SetUnit( )
'bGetUnit( )

i -- Subjeei --
(from Subject Observer Package) !

!_bobserverList

¢'Registe rAsObserver( ) /
L .......

DataElementSet t_,numberOfElements
_state

_O.i;ollected By _RegisterAsObserver( )_tl _'AcldDataElement( ) I_DeleteDataElement( ) i
_GetNumberOfElements(
_UpdateDataElement( )
_SetStateUnset( )
_GetState( )

i 'bEvaluateState( )

DataElementSet

The DataElementSet is a collection of instances of DataElement. A list of proper-
ties and methods for this class can be found in Table 5-23. The DataElementSet

inherits from the Subject and DataStorage classes, so it also contains the proper-
ties and methods shown in Tables 5-14 and 5-26.

Table 5-23. Properties and Methods for DataElementSet Class

Private Properties

numberOfElement The number of DataElements contained in the DataElementSet.

State The state attribute contains the state of the DataElementSet.

Public Methods

RegisterAsObserver 0

AddDataElement 0

DeleteDataElement 0

The RegisterAsObserver operation is used to allow the subject to
register as an observer of its input DataElementSet.

The AddDataElement operation is used to add a DataElement to a
DataElementSet.

The DeleteDataElement operation is used to delete a DataElement
from a DataElementSet.

5-36



ASAC EA Design

Table 5-23. Properties and Methods for DataElementSet Class (Continued)

GetNumberOfElements 0 The GetNumberOfElements operation is used to get the number of
elements in a DataElementSet.

UpdateDataElement 0
return

SetStateUnset 0 return

GetState 0 return

EvaluateState 0 return

The UpdateDataElement operation is used to update values, units,
etc. in a DataElementSet.

The SetStateUnset operation is used to set the DataElementSet state
to Unset.

The GetState operation is used by an observer to get the state of the
DataElementSet.

The EvaluateState operation is used by the DataElementSet to evalu-
ate its state.

DataElement

A DataElement is a container for a piece of data. A list of properties and methods

for this class can be found in Table 5-24.

Table 5-24. Properties and Methods for DataElement Class

Private Properties

name

type

unit

state

value

The name attribute contains the DataElement name.

The type attribute contains the DataElement type, i.e., int, float, etc.

The unit attribute contains the DataElement unit, i.e., feet, inches, etc.

The state attribute contains the DataElement state, i.e., set or unset.

The value attribute contains the DataElement value.

Public Methods

SetState 0

GetState 0

SetValue 0

GetValue 0

SetName 0

GetName 0

SetType 0

SetUnit 0

GetType 0

GetUnit 0

The

The

The

The

The

The

The

The

The

The

SetState operation is used to set the state of each DataElement.

GetState operation is used to get the state of each DataElement.

SetValue operation is used to set the value of each DataElement.

GetValue operation is used to get the value of each DataElement.

SetName operation is used to set the name of each DataElement.

GetName operation is used to get the name of each DataElement.

SetType operation is used to set the type of each DataElement.

SetUnit operation is used to set the unit of each DataElement.

GetType operation is used to get the type of each DataElement.

GetUnit operation is used to get the unit of each DataElement.

DataConverter

The DataConverter converts the unit and value for a data element. A list of prop-

erties and methods for this class can be found in Table 5-25.

5-37



Table 5-25. Properties and Methods for DataConverter Class

Private Properties

sourceDataUnit

sourceDataValue

targetDataUnit

targetDataValue

The sourceDataUnit attribute defines the source DataElement's unit,
i.e.,int, float, etc.

The sourceDataValue attribute defines the source DataElement's
value.

The targetDataUnit attribute defines the unit for the target after the
conversion.

The targetDataValue attribute defines the value for the target after the
conversion.

Public Methods

ConvertData 0 The ConvertData operation is used to convert the unit and value of the
DataElement.

DATA STORAGE PACKAGE

The Data Storage package contains the data storage/retrieval interface that enables

local or global storage and retrieval. The class diagram is shown in Figure 5-21.

Figure 5-21. Data Storage Class Diagram

I OataS!0rage
i

_Store( )

l _Retrieve( )

DataStorage

The DataStorage class manages storage and retrieval of data objects. A list of

properties and methods for this class can be found in Table 5-26.

Table 5-26. Properties and Methods for DataStorage Class

Public Methods

Store 0

Retrieve 0

The Store operation is used to store data objects.

The Retrieve operation is used to retrieve data objects.

DSSA Substage 4-7" Develop State Diagrams

State diagrams describe all possible states of a particular object and how the ob-

ject's state changes on particular events. The following sections contain state dia-

grams only for the classes that require states.

ANALYSIS STATE DIAGRAM

The Analysis has four states: "Not Ready To Run," "Running," "Done," and

"Error." On creation of the Analysis, it creates an AnalysisSpecification, receives

5-38



ASAC EA Design

input and output DataElementSets from the AnalysisSpecification, and registers as

an observer to its input DataElementSet. At the same time, the initial state of the

Analysis is set to the "Not Ready To Run" state. When the Analysis is notified of a

state change on its input DataElementSet, the Analysis finds out what the state is.

If the input DataElementSet is in the "Set" state, the Analysis will change to the

"Running" state and notify its observers. In the "Running" state, it will create the

Models and DataRelationships needed for the Analysis and will wait for its output

DataElementSet to become "Set." Once the output DataElementSet of the Analysis

is "Set," it will go to the "Done" state where it will remain until either the Analysis

input DataElementSet becomes "Unset" (at which time the Analysis will go to the

"Not Ready To Run" state), or it is destroyed. Upon a system error, the Analysis

will go to the "Error" state. Figure 5-22 shows the Analysis state diagram.

Figure 5-22. Analysis State Diagram

\
Create

Analysis_Ready

- ent_/i ^Analysi_ificatlon ,C real e
_-_ entry: ^AnalysisSpecification. Getl nput DE S

. entry: ^AnalystsSpeciftcat _n.G_OutputDES

"_-_ _ _ entry: ,_Observe_.RegisterAsObs_ver

entry: AObeemer NotifyStateChange{state}

I
/J" ,\

inputDESGetState _ Unset \

/-'J \

_m Ar_alysis, NotlfyStateChange & inputDES.GetState == Set

t L _° {
entry: ._Oio_erver. NotifyStat eCha rtge( star el '\

{ do:wait J_ ',

Artatys{sNoti_StateCnange & outputDES GetState == Set .......

-_ Runn ng 'i

entry: ^AnalysisS_ec_fication Get ModeiN arne(n unCerOfModels
enid': ^Model.Create(name) /

entTy: AAna_ysisSpecificatlon.GetRetat_onshipNarn° numbecOfRelatlonships

entry: ^DataFlelat_hip Create(name)

7
/,

system DetectableEr ror

Error {

entP/: ,',Obeerv e r,NotifyStateC ha nge (stare)
do: _lusteError P •

J

",,,

_) analysisDostruction

MODEL STATE DIAGRAM

The Model class has four states: "Not Ready To Run," "Running," "Done," and

"Error." On creation of the Model, it creates a ModelSpecification, receives input

and output DataElementSets from the ModelSpecification, and registers as an

observer to the input DataElementSet. At the same time, the initial state of the

Model is the "Not Ready To Run" state. When the Model's input DataElementSet

goes to the "Set" state, the Model will change state to the "Running" state and

5-39



notify its observers.In the"Running" state,theModel will performits transfor-
marionandwill wait for its outputDataElementSetto become"Set." Oncethe
ModeloutputDataElementSetis "Set," it will go to the"Done" stateandwill re-
mainthereuntil eithertheModel inputDataElementSetbecomes"Unset" (at
whichtimetheModelwill go to the"Not ReadyTo Run" state),or it is destroyed.
Uponasystemerror,theModelwill go into the"Error" state.Figure5-23shows
theModelstatediagram.

Figure 5-23. Model State Diagram

i

_ modelCons_ruction

Create

Model_Ready

entry: ^M0delSpecificatio n.C reate

entry: ,_iodelSpeciflcation, Getl nput D E S

entry: NModelSpecification.GetOutput DES

entry: ^Observer.RegisterAsObsenter

NotReady_To_Run

j ',,

ModeI.NotilyStateChange & InputDES.GetState _ Ur_t

Done "

entry: -_Obsenter.NotifyStateChange(state) ModeLNotilyStateChan_e & inputDES.GetState == Set

_ \

ModeI.NottfyStateChange & outputDES.GetState _5_._i

Running I

entry: _Obse rv_ifyStateCha nge (star e)

,/

//
/

systemDetectable Error

/

' . . _ Error )

entry: ,',Ot_server.NoltfyStateChange(stale) i
dO: evaluateError !

',,,

, rnodeIDestruetion

DATARELATIONSHIP STATE DIAGRAM

The DataRelationship class has four states: "Not Ready To Run," "Running,"

"Done," and "Error." On creation of the DataRelationship, it creates the DataRe-

lationship Specification. The DataRelationship then receives input and output

DataElementSets from the DataRelationship Specification and registers as an ob-

server to the input DataElementSet. At the same time, the initial state of the Da-

taRelationship is the "Not Ready To Run" state. When its input DataElementSet

goes to the "Set" state, the DataRelationship will change state to the "Running"

state and notify its observers. In the "Running" state, the DataRelarionship will

perform its transformation and will wait for its output DataElementSet to become

5-40



ASAC EA Design

"Set." Once the DataRelationship output DataElementSet is "Set," it will go to the

"Done" state and will remain there until either the DataRelationship input

DataElementSet becomes "Unset" (at which time the Model will go to the "Not

Ready To Run" state), or it is destroyed. Figure 5-24 shows the DataRelationship

state diagram.

Figure 5-24. DataRelationship State Diagram

O _taRlationahipConslruction

Crlmte

Date.Relationship_Ready

entry: J_at a Re_.t IonshipSpecificat Io n .C r eat e

entry: ^SubjecLGetlnputDES

; entry: ^Subject.GetOuWut DES

entry: _Observer. RegisterAsObserver

Not_Ready ToRun !

entry: _bserver N0tifyStateCh,= n ge(state) l

// ,,\

/

DataRelationship.NotrlyStateChlngo & inputDES GetState =='L_et

,_ DataRe_atlon NottfyStateChange & inputDES.GetStato == Set

entry; AObserver.aot_yStateChangeistate) ' "_, \\\-,

DataRe_atlonship.NotifyStateChange & outputDES.GetState == Set

//

syslemDetectable Error

Running

! entry: AObserve r.NotifyStateChange(stat e]

\
\

//'

I entry: AObserver Not n_/StateChange(stat e) I

I dO: evaluateError - _,_ dataRelationsh _>Dest ruct _Dn

DATAELEMENTSET STATE DIAGRAM

The DataElementSet class has three states: "Set," "Unset," and "Error." On crea-

tion of the DataElementSet, its initial state will be the "Unset" state. The DataE-

lementSet will go to the "Set" state when it evaluates its state and finds all of its

DataElements are in the "Set" state. It can be forced to the unset state by its ob-

servers. Upon a system error, DataElementSet will go into the "Error" state. Fig-

ure 5-25 shows the DataElementSet state diagram.

5-41



Figure 5-25. DataElementSet State Diagram

dataElement SetConstrucbon

_-_.Create

DataElementSet_Ready
AddElement, Delete Element, Etc.

AddElement,DeleteElement, Etc.

DataElementSet.SetStateUnset( state ) _
i ,_

- _- -- _Z'_EvaluateState & DataElementSet.GetS_te(state) = Unit-" --._' Unit
Set

EvaluateState & DataElementSet.GetState == Set

v v
/"

/

/

systemEn'or_te_ed

' Error 't V..... _Q_ =taEle_entOe=_ion

DATAELEMENT STATE DIAGRAM

The DataElement class has three states: "Set," "Unset" and "Error." On creation

of the DataElement, its initial state will be the "Unset" state. The DataElementSet

will go to the "Set" state when its state is changed to "Set" by the SetState0

command. It will change to the "Unset" state when the SetState0 command sets it

to "Unset." Upon a system error, DataElement will go into the "Error" state. Fig-

ure 5-26 shows the DataElement state diagram.

Figure 5-26. DataElement State Diagram

0_

\\Create

\

SetValue,SetUnit,Etc.

i do=evaluateError !

DataElement_Ready SetValue,SetUnit,Etc.

0

DataElement.SetState(state) = Unset Uflset

DataElement.SetState(state) = Set

]

systemErrorDetected
L/ Ii

:_(g_, dataElement Destruction

5-42



ASAC EA Design

DSSA Substage 4-8: Develop Deployment Diagrams

A deployment diagram shows processors, devices, and their connections. A proc-

essor is a hardware component capable of executing programs, i.e., a computer. A

device is a hardware component with no computing power, i.e., hardware con-

troller or modem. There are no devices in the ASAC EA system, so the POC De-

ployment Diagram contains only processors and their connections with each other.

The Deployment Diagram is shown in Figure 5-27. It is a generic model showing

that there will be an Analysis Server with a Visigenic Smart Agent on it as well as

multiple Model servers that will have Model Applications running on them.

Figure 5-27. POC Deployment Diagram

Model Application 1 Visigenic SmartAgent Model Application3
Model Application 2 Analysis Application Model Application 4

DSSA Substage 4-9: Review and Iterate

Review and iterate the items developed in DSSA stage 4.

DSSA STAGE 5mlDENTIFY REUSABLE ARTIFACTS

The goal for this phase of the domain-engineering process is to populate the soft-

ware architecture high-level design(s) with components that may be used to gen-

erate new applications in the domain.

The following substages of DSSA stage 5 will be completed during the ASAC

design effort:

5-1 Develop and collect the reusable artifacts

_I, 5-2 Develop each module

5-3 Requirements, verification, and testing

5-4 Review and iterate.

5-43



DSSA Substage 5-1" Develop and Collect the Reusable Artifacts

This substage addresses how to determine the best source of components to

populate the software architecture. It is often referred to as the make, buy, or

modify decision.

ASAC SERVICES

Three product types are necessary to provide the ASAC Services identified in the

ASA C Executive Assistant Architecture Description Summary. They are

• message broker,

• binding language, and

• software distributor.

Additional product types researched included

• security services,

• directory services, and

• expert systems.

For the ASAC EA implementation, the security and directory services are pro-

vided by the message broker products, so additional security and directory service

products are not required. A small development effort will provide the same func-

tionality as an expert system, therefore, a stand-alone expert system is not re-

quired.

Message Broker Overview

A message broker is a software service layer that provides interoperability be-

tween software systems on different platforms. It represents the transaction and

presentation layer of the ISO OSI model. It is generally used for communication

between message brokers residing on different systems. It provides a heterogene-

ous view to software components residing on different platforms. For the ASAC

EA system it will be the backbone of the EA services, and provide the infrastruc-

ture to tie in legacy systems and models in the existing models set, allowing a sin-

gle model repository for distributed model development. It will provide the

interface for client-server communications using a message-oriented architecture

in an open environment.

There is a depiction of the software component model relative to a hardware

model in Figure 5-28. A message broker is analogous to a hardware back panel, or

bus. It provides the interface and the communication protocol to allow cards

(components) to communicate, based on a predefined and deterministic protocol.

5-44



ASAC EA Design

Like hardware, the cards can be produced by any manufacturer that conforms to

the interface specified by the bus. This interoperability is what is achieved by

message brokers.

Figure 5-28. Software Components (Distributed Objects)

IC_ i _,- Component
! (Distributed object)

° ° o ° • ° o °_Ell_D_B°ard .:'__Framew°rk.
i

_ Bus -_ : 1> Object bus

(Object request

Jlnterface -_ !

specification i

Broker [ORB])

Interface specificatior
language

Unit-_ _ Suite

Binding Language Overview

A binding language is software that provides an interface between the Analysis

Application and the ASAC EA models. A binding language is needed to interface

with the Model Application because the models were written without considera-

tion for the calling conventions supported between supported models and legacy

models. It provides a level of abstraction that ensures interoperability of the appli-
cation across different interfaces.

Software Distributor Overview

A software distributor allows a server to automatically broadcast updates to nu-

merous clients simultaneously at a scheduled time (push technology), or allows a

client to selectively extract updates and install code from the appropriate server

upon logging on (pull technology). This process enables the management of the

whole software distribution process with minimal human intervention thereby re-

ducing and/or removing the problems associated with version and update control.

Table 5-27 provides a mapping of ASAC services that each product type should

provide, as well as services that will require substantial development. This map-

ping validates that each ASAC Service is provided by a product type or develop-
ment effort.

5-45



Table 5-27. ASAC EA Services to Product Mapping

ASAC services

Distributed computing services

Remote process service

Directory service

Data interchange service

Analysis service

Thread management service

Presentation services

User interface service

Alert notification service

Data services

Data administration service

Data management service

File input and output service

Software distribution service

Catalog service

Management services

Security administration service

System administration service

Application management service

System management service

Audit service

Error management service

Performance monitoring service

Security service

Communication services

Communication management
service

Network service

Intra-application communication
service

Transaction management serv-
ice

Queuing service

Load balancing service

Common support services

Alerts service

Message service

Help service

Product services

ORB services

Naming service

ORB services

ORB services

ORB services

Client binding language/browser

Client binding language/browser

API to Sybase

API to Sybase

C+* I/0 Streams

Electronic S/W distribution

Catalog service

Security service

API to HP-UX

API to HP-UX

Transaction service

Audit service

IDL exceptions

Load balancing service

Security service

Communication services

TCP/IP

TCP/IP

IIOP

Transaction service

ORB services

Load balancing service

Object

request
broker

X

X

X

X

X

X

X

Binding

language

Common support services

IDL exceptions

ORB services

Browser

X

X

X

X

X

X

X

Software

distribution

X

Development

X

5-46



ASAC EA Design

Support Services

Additional products to provide support services were identified. They include

• software libraries and

• software development tools.

Software Library Overview

A software library is a set of reusable software components, which are developed,

fully tested, and are placed under configuration management control. Software

libraries are typically developed internally or by a third party with the intention of

being used directly in the development of the ASAC EA system.

Software Development Tool Overview

Software development tools are an integrated family of software products that en-

hance or aid in the development of an application design, modeling, coding, and

testing. They provide iterative development, including visual modeling of system

requirements, source-code generation, and reverse engineering of existing source

code into a graphical object model.

SOFTWARE EVALUATION PROCESS

Each major software product will be evaluated according to a software evaluation

process which is as follows:

• Review ASAC EA requirements, assumptions, constraints, and issues.

• Map ASAC EA services to product categories.

• Identify candidate products.

• Develop a preliminary list of evaluation criteria.

• Narrow the list of candidate products.

• Obtain and install evaluation copies of the candidate products.

• Develop an evaluation test plan.

• Call customer references.

• Complete the list of evaluation criteria.

• Assign weighting to the evaluation criteria.

• Perform evaluation tests.

• Score products against evaluation criteria.

5-47



Selecta product.

Figure5-29is a flowchartof theevaluationprocess.

Figure 5-29. Software Evaluation Process Flowchart

Review Requlrementsr l
Assumptions,

Constraints, and Issues

Map Services to

Product

Categories

c.,, oo.,.... Eva,o%.;_;_,,:ter,.

core Products

I-
Select Product

MESSAGE BROKER EVALUATION

Review ASAC EA Requirements, Assumptions, Constraints, and Issues

A review of the ASAC requirements, assumptions, constraints, and issues was

performed to find the applicability to message brokers. This information was used

to identify candidate products and develop a preliminary list of evaluation criteria.

5-48



ASA C EA Design

Map ASAC EA Services to Product Categories

The services identified in the ASAC EA Products to Services Mapping

(Table 5-27) were used to identify candidate products and develop a preliminary
list of evaluation criteria.

Identify Candidate Products

This step involved the identification of potential message broker products. Indus-

try journals, periodicals, books, and on-line data sources were used to identify

candidate products.

Initial considerations of the client-server standards or models are as follows:

• Common Object Request Broker Architecture (CORBA)

• Distributed Component Object Model (DCOM)

• Distributed Computing Environment (DCE)

• Remote procedure calls (RPC)

• Message queuing

• Named pipe communication

• Other inter-process communication (IPC) mechanisms.

Common Object Request Broker Architecture

Based on distributed-object technology, CORBA is glue logic (middleware) that

makes it possible for objects to dynamically discover and interact with one an-

other across different platforms, operating systems, and networks. CORBA speci-

fies an extensive set of services for creating and deleting objects, accessing them

by name, storing them in persistent stores, externalizing their state, and defining

ad hoc relationships between them.

Distributed Component Object Model

DCOM is a Microsoft standard for implementing distributed objects. It specifies

interfaces between component objects within a single application or over a network.

DCOM is designed for use across multiple network transport layers, including In-

ternet protocols such as HTTP.

Distributed Computing Environment

DCE is an architecture consisting of standard programming interfaces, conven-

tions, and server functionality (e.g., naming, distributed file system, remote proce-

dure call) for distributing applications transparently across networks of

5-49



heterogeneouscomputers.DCE is promotedandcontrolledby theOpenSoftware
Foundation(OSF).

Remote Procedure Calls

RPC is a protocol that allows a program running on one host to execute a program

on another host. RPC is an easy and popular paradigm for implementing the cli-

ent-server model of distributed computing.

Message Queuing

Message queuing is a medium for passing messages between client and server ap-

plications using messages. A queue can be available dynamically in Random Ac-

cess Memory or on permanent physical device.

Named Pipe Communication

Named pipe communication is a first-in first-out that facilitates one-way commu-

nication between two processes that are not necessarily spawned from the same

parent.

Other IPC Mechanisms

Other IPC mechanisms include Shared Memory Segments, Transmission Control

Protocol/Internet Protocol (TCP/IP) Sockets, and UDP/IP Datagrams. Shared

Memory Segments allow multiple processes to share one common region of

memory for the purpose of passing information. TCP/IP Sockets and UDP/IP Da-

tagrams facilitate transparent interprocess communication across machines.

A decision was made to concentrate on products that are based on distributed-

object technology since it promises the most flexible client-server systems. This is

because distributed-object technology encapsulates data and business logic in ob-

jects that can roam anywhere on the network, run on different platforms, talk to

legacy applications by way of object wrappers, and manage themselves and the

resources they control. Software components designed as objects can be modified

without affecting the rest of the components in the system or their interoperability.

Out of several distributed-objects technologies, the two dominant industry imple-

mentations, CORBA and DCOM, were selected for evaluation in ASAC EA.

Six object request brokers were researched, one compliant to the DCOM standard

and five compliant to the CORBA standard, as shown in Table 5-28. They are the

following:

. DAIS by ICL is a set of CORBA-based software tools to create and run a

distributed application. The DAIS run-time libraries contain a CORBA

compliant ORB. DAIS supports C and C++.

5-50



ASAC EA Design

.

.

,

.

,

EntireBroker by Software AG provides a set of platform and transport in-

dependent communication services based on Microsoft's DCOM archi-

tecture for distributed objects, enabling a variety of applications to

communicate together. Supported platforms include MVS, VSE, BS2000,

UNIX, and Windows NT.

ObjectBroker by BEA Systems, Inc. (formerly called DEC ObjectBroker),

is a CORBA 2.0 object request broker with full CORBA compliant C++

language bindings. It supports DCE's Generic Security Services API

(GSSAPI), which allows the use of both DCE-based security (Kerberos)

and other third-party authentication packages. ObjectBroker supports C

and C++.

Orbix from IONA Technologies is a full and complete implementation of

CORBA. Orbix runs on more than 20 operating systems with seamless op-

erability guaranteed across all supported platforms. It provides support for

C++, Java, Ada95, and Smalltalk.

PowerBroker CORBAplus by ExperSoft is a comprehensive implementa-

tion of the CORBA 2.0 specification. It includes asynchronous requests,

multithreaded support, and delivers visual tools for editing the Interface

Repository. PowerBroker CORBAplus is currently available for Windows

95/NT, Solaris, and HP-UX, and supports both C++ and Java.

VisiBroker by Visigenic Software, Inc. (formerly called ORBeline), is a

CORBA 2.0 object request broker with a native implementation of the

IIOP protocol. VisiBroker features an agent-based, multithreaded archi-

tecture with automatic configuration and smart binding. It also provides

load balancing and high availability, enabling easy object migration and

replication. VisiBroker supports both C++ and Java.

Table 5-28. Candidate Message Broker Products

Product Vendor Standard

DAIS

EntireBroker

ObjectBroker
Orbix

PowerBroker CORBAplus
VisiBroker

ICL PLC

SoftwareAG

BEASystems,Inc.

IONA Technologies,PLC

ExperSoftCorporation

VisigenicSoftware,Inc.

CORBA

DCOM

CORBA

CORBA

CORBA

GORBA

Once the products were identified, a dialogue was started with each vendor, prod-

uct literature was requested, and technical briefings were attended. This material

formed the basis for the initial analysis of the message broker products. Detailed

vendor questionnaire responses can be found in Attachment A to this document.

5-51



DevelopaPreliminaryList of EvaluationCriteria

A preliminarylist of evaluationcriteria wasderivedbaseduponstandardservices
basedon requirementsidentifiedin theASAC EA ArchitectureDescription.In-
dustryjournals,periodicals,books,andon-line datasources,productliterature,
etc.,wereusedto defineadditionalitemsin thecriteriabasedonsimilarproblem
domainandapplicablestudies.Ninemajorcategoriesweredevelopedfor the
evaluation.Theyare

1. PlatformsSupported,

2. LanguageBindings,

3. StandardsCompliance,

4. Usability andCustomizability,

5. FunctionalFeatures,

6. DevelopmentIssues,

7. BusinessIssues,

8. MarketAcceptance,and

9. CostandTraining.

Theevaluationcategoriesaredescribedin moredetailbelow.Thefinal evaluation
criteriamatrix is locatedin AppendixC.

Platforms Supported

Message broker components will potentially run on the following server and client

platforms: HP-UX 10.20, Windows NT, SGI IRIX v5.3, Sun OS v5.4 or above,

Windows95, Windows 3.1, Macintosh 7, Java Virtual Machine and AIX.

Language Bindings

Message broker components will potentially use the following language: C, C ÷÷,
and Java.

Standards Compliance

The most important issue in evaluating an ORB is its conformance to the CORBA

2.0 standard. Most commercial ORB's claim CORBA standard compliance, but

the extent of the compliance may vary from product to product and vendor to ven-

dor. CORBA 2.0 compliance is defined as adherence to the CORBA 2.0 standard;

promises interoperability between independently developed applications across

heterogeneous networks of computers. The CORBA 2.0 standard has been widely

5-52



ASAC EA Design

adopted by 750 member companies. This extensive support provides some assur-

ance of interoperability between CORBA ORBs and plug-and-play capability

amongst HOP based products. Note: DCOM was eliminated from our evaluation,

so DCOM compliance is not discussed in this section. See "Narrow the List of
Candidate Products" for more information.

CORBA Services are a part of the CORBA 2.0 standard. CORBA Services pro-

vide the capability to extend the basic operation of an ORB to support current and

future application needs. The following 13 services have been defined by the

OMG and have varying availability in commercial ORBs.

1. Life Cycle Service

2. Persistence Service

3. Naming Service

4. Event Service

5. Transaction Service

6. Concurrency Control Service

7. Relationship Service

8. Externalization Service

9. Security Service

10. Licensing Service

11. Object Query Service

12. Properties Service

13. Time Service.

Usability and Customizability

Usability and customizability are elements that can significantly enhance an

ORB's utilization. Some of the issues to address regarding an ORB's usability and

customizability are the following

How easy is installation?

How easy is configuration?

4, How portable is the ORB implementation between platforms?

5-53



• How portableis theORBimplementationbetweendifferentvendors?

• Is the ORB documentation accurate and detailed?

• How is the ORB performance compared to other ORBs?

Functional Features

Functional features were based on ASAC EA required services such as Load Bal-

ancing, Error Management, Interoperability, Fault-Resilience, and Audit Trail,

that are not currently covered by the CORBA 2.0 standard services.

Development Issues

A friendly development environment can assist the developer in rapidly building

the application. A sophisticated debugging capability can increase a developer's

productivity in discovering and fixing logic problems.

Business Issues

When buying a commercial ORB product, technical support is very important.

The vendor must provide support for the current product and strategic evolution of

the product to meet the developing needs of the customers. The company' s viabil-

ity, quality of support, dedication to the product, and response to changing market

needs may be as important as technical aspects of the product.

Market Acceptance

When defining the evaluation of market acceptance, the maturity of the product

was considered, including features, as well as market share that can provide in-

sight into user acceptance of the product.

Cost and Training

Like most buying decisions, cost is an important factor. Full life-cycle cost and

the cost associated with the learning curve were researched.

Narrow the List of Candidate Products

There is an ongoing industry debate between the CORBA and DCOM users. Both

have merits in their respective application domains, but CORBA seemed more

attractive than DCOM for the following reasons:

Cross-platform support. At present, the ActiveX/DCOM implementation

is limited to Microsoft for Windows 95/Windows NT and UNIX (limited

support) through BEA and Software AG. CORBA is a sponsored specifi-

cation of 750-member vendors, including Microsoft and Digital. These

5-54



ASAC EA Design

member companies support a wide variety of platforms including MS-

DOS, 16-bit and 32-bit Microsoft Windows platforms, most UNIX im-

plementation, OS/2, OS/400, Mac/OS, VME, MVS, VMS, and a number

of real-time operating systems.

Cross-language support. CORBA is designed to allow objects written in

supported languages (i.e.,Java, C++) to be ported to different ORBs via an

Interface Definition Language (IDL) that is CORBA standard, while hid-

ing the underlying implementation of the ORB. This elevates the level of

abstraction from the binary level to higher level language constructs.

DCOM provides binary level interoperability, which is closely tied to a

DCOM specific API, making portability of code problematic.

Architecture. CORBA component/objects follow the classical Object Ori-

ented (OO) model and supports multiple inheritance, encapsulation, and

polymorphism. As of this writing, DCOM components are essentially

black boxes, encapsulated OLE, which can not be extended via inheritance

to create new instance components.

A high-level initial evaluation was performed to refine the list of candidates. In

particular, the market presence and viability of the company, product maturity,

stability of future product development and enhancement plans, and the availability

and quality of technical support were assessed. Out of the six products being

evaluated the following were eliminated:

BEA 's ObjectBroker

This product was recently sold to BEA by DEC. A stable plan for future product

releases, pricing, and support/upgrades were unobtainable from BEA.

ICL's DIAS

ICL is a European-based corporation with no technical support presence in the

United States of America.

Software AG's Entire Broker

Did not support CORBA.

The ORB evaluation was continued with the following three products:

1. ExperSoft' s PowerBroker

2. IONA's Orbix

3. Visigenic's VisiBroker.

5-55



ObtainandInstallEvaluationCopiesof theCandidateProducts

Evaluationcopiesof eachof theproductslistedin Table5-29werereceivedand
installedon theplatformslistedbelow.Notethattheserver-operatingenviron-
mentis definedasHP-UX version10.20,however,evaluationcopieswerenot
readilyavailablefor all platforms.Table5-29lists theproductsthatwereinstalled
for evaluationandtheplatformsonwhichtheywereinstalled.

Table 5-29. Candidate Message Broker Product Install Pla(forms

Vendor Product Platform

ExpertSoft PowerBroker Windows 95

IONA Orbix Windows 95, HP-UX 10.20

Visigenic VisiBroker Windows 95, HP-UX 10.20

Develop an Evaluation Test Plan

An evaluation test plan was written to permit consistent investigation and evalua-

tion of the message broker products. The plan described the product features to be

tested and demonstrated. The plan called for the following activities to be per-
formed

• Product installation

• Execution of a sample program within a machine

• Execution of a sample program across two local machines

• Execution of a sample program across two remote machines

• Implementations of security, load balancing, and directory services.

Call Customer References

ExperSoft and Visigenic supplied customer references. The references were users

whose systems were representative of the ASAC EA. One reference for each ven-

dor was contacted via telephone conference call and questioned about their use

and experiences with the product. The following topics were discussed with each
reference:

• Nature of the project (communication, finance, etc.)

• Size of project

• Overall architecture of project

• Duration of project

5-56



ASAC EA Design

• Development environment (operating system, database, etc.)

• Runtime environment (if different than development)

• Other ORB products being considered and criteria for selection

• Percentage of ORB development compare to overall development

• Capabilities of ORB

• Utilization of ORB

• Ease of installation of ORB product

• Ease of development using ORB

• Problems encountered during design and development

• Ease of integration of ORB with other products

• Frequency of ORB product updates during project development

• Technical support response time

• Overall opinion of ORB.

The detailed questions and answers for each customer reference are located in

Appendix C. Note: References for IONA were unavailable. Research was substi-

tuted for customer contact.

Complete the List of Evaluation Criteria

Knowledge obtained during research and testing enabled us to refine and complete

the list of evaluation criteria. Evaluation criteria are used to select a product be-

cause

the criteria enforces a rigorous and standard product comparison,

they reduce the likelihood of new ideas surfacing post facto,

they remove or surface biases,

they provide a documentation trail, and

they provide decision logic.

The evaluation criteria are divided into major categories, subcategories, and sub-

category questions. Major categories are the highest level of criteria grouping;

nine major categories were defined. Subcategories decompose major categories

5-57



into groups.Subcategoryquestionswereusedto evaluateaproductin a given
category.Thenumberof questionspercategoryvaries.A totalof 101questions
weredefinedfor theevaluationcriteria.Thecompletedlist of evaluationcriteria
canbe foundin AppendixC.

AssigningWeightingto theEvaluationCriteria

Weightswereassignedto eachmajorcategorybaseduponthecategory'simpor-
tanceto theASACEA. Thetotalweightfor themajorcategoriesis 100.After com-
pletingmajorcategoryweighting,weightswereassignedto eachsubcategoryand
subcategoryquestion.Thetotal weightfor subcategorieswithin amajor categoryis
100.Likewise,thetotal weightfor questionswithin a subcategoryis 100.This
methodensureseachquestionis weightedaccordingto its relativeimportance.

Finally,possibleanswersfor eachquestionweredeterminedandassignedascore
(eachquestioncouldreceiveaminimumscoreof 0 andamaximumscoreof 5). It
wasimportantto definethepossibleanswersto eachquestionin advanceandas-
signeachpossibleanswerascore.Thisallowedfor consistentproductscoring
throughouttheremainderof theproductselectionprocess,nomatterhow many
peopleconductedtheinformationgathering.

Table5-30showsexamplesof thetypeof questionaskedin eachof thecatego-
ries.

Table 5-30. Evaluation Questions by Category and Subcategory

Category Subcategory Question

Platforms supported Server side HP-UX 10.20 or above?
Client side Java Virtual Machine?

Language bindings Server side C, C**, Java?
Client side C, C÷*, Java?

Standards compliance CORBA 2.0 Compliance Does the product support the Intemet Inter-ORB
Protocol (IIOP)?

CORBA Services Does the product allow objects on the bus to Io-
rate other objects by name?

Usability and customizability Ease of Installation

Ease of configuration

Portability (same vendor)

Portability (different ven-
dor)

Documentation

Performance

Does the product provide automated installation?

Does the product provide some capability that
allows additions or modifications to the infra-
structure?

Is the server-side code easily portable across
platforms?

Is the server-side code easily portable to different
ORB products?

Is the documentation accurate and detailed?

Using the custom test script, what is the average
time for one client to call a server?

5-58



ASAC EA Design

Table 5-30. Evaluation Questions by Category and Subcategory (Continued)

Category Subcategory Question

Functional features

Development issues

Business issues

Load balancing

Audit trail

Error management

Interoperability

Fault-resilience

Development environment

Debugging aids

Technicalsupport

Viability of the vendor

Dedication of the vendor

to the product

Strategic alliance partners

Does the product support load balancing?

Does the product provide audit capability?

Does the product provide error handling capabil-
ity?

Does the product provide cross platforms inde-
pendence?

Does the product support fail-over (standby serv-
ers) for fault recovery?

How easy is development effort using this prod-
uct?

Does the product provide method tracing at any
granularity?

What level of technical support does the vendor
provide?

Is the vendor well capitalized?

Does the vendor have an influential representation
at OMG?

Has the vendor formed alliances with significant
third-party providers?

Market acceptance Maturity When was the product introduced?

Market share What is the current market share relative to com-

petitors?

Cost and training None For a 5-server and 40oclient ASAC EA system,
what is the product suite price range?

The weighted and scored evaluation criteria and questions can be found in

Appendix C.

Perform Evaluation Tests

The activities prescribed in the evaluation procedures were performed and proved
to be invaluable because it

provided a basis for assessing each product's administrative features,

provided a basis for assessing each product's programming interface,

t identified undocumented features (both positive and negative) for each

product,

confirmed or denied vendor claims made in sales and technical material,

provided a basis for assessing the adequacy of the supplied technical

documentation, and

provided a basis for examining each product in the operating environment.

5-59



Thepremisebehindtestingeachof theseproductswasto performanevaluation
thatwouldprovidefeedbackon theease/difficultywith which anapplication
couldbetakenfrom conceptto implementationusingeachof themiddleware
evaluationcandidates.In addition,performanceandcapabilitiesof eachproduct
wereof particularinterest.

An evaluationcopyof eachvendor'sproductwasobtainedandinstalledon the
ASAC EA targetplatform(s)shownin Table5-31.Eachof thevendor'sprovided
"sample"applicationsthatwerebuilt (accordingto vendordocumentation)and
executedto provethatour installationandenvironmentwascorrect.Then,the
sampleapplication"count" (seeAppendixC) waschosento betherepresentative
programto bebuilt andimplementedusingeachof thevendor'sproducts.

Table 5-31. Test Response Time (ms)

Vendor C++ Java

ExperSoft 10.83 12.232

IONA 31.182 12.26

Visigenic 31.155 12.241

The only requirements that were considered when choosing a sample test applica-
tion were as follows:

The application had to have a client component and a server component.

The middleware product would be used to product to facilitate machine-
distributed client-server communication.

The application would be simple enough to allow comparison across dif-

ferent vendor implementations, yet robust enough to prove the core re-

quirements needed by ASAC EA with respect to distributed client-server
communication.

The "count" program was implemented, executed, and benchmarked for perform-
ance across two remote machines. The results of this test are reflected in

Table 5-31.

Score Products Against Evaluation Criteria

Each question was answered and scored for each product based on research, testing,

and customer citations. A total for each product for each question was calculated.

(MajorCategoryWeight) x ( SubcategoryWeight ) x (Question Weight ) ×

(Score) x ( NormalizationFactor ) = PointsReceivedforeachQuestion

Note: The normalization factor scales the scoring to a basis of 500 points.

5-60



ASAC EA Design

E ( points received for each question ) = points received fora subcategory;

E ( points received foreach subcatego ry ) = pointsreceived fora category;

E (p°intsreceived for each category) = productscore

The final criteria and scoring were analyzed to ensure reasonableness and non-

redundancy. The completed Evaluation Criteria Matrix is located in Appendix C.

Select a Product

As outlined in "develop a preliminary list of evaluation criteria," there are nine

major categories that were used in the product evaluation process. Table 5-32

summarizes the relative performance of the ExperSoft, IONA, and Visigenic cate-

gories.

Based upon the results compiled using the Evaluation Criteria Matrix, Visigenic

placed first, IONA placed second, and ExperSoft placed third. Given the small

margin between Visigenic and IONA, we felt either product would suffice. Visi-

genic was selected because

1. Visigenic's technology was adopted by major market leaders such as

Netscape, Oracle, Novell, and Sybase;

2. Netscape made VisiBroker a part of NavigatorTM;

3. SunSoft collaborated with Visigenic on cross-platform support for Java,

CORBA, and RMI conversion standards;

4. Visigenic offers the only native implementation of IIOP; and

5. Visigenic 5 offered timely technical support.

Table 5-32. Message Broker Evaluation Summary

Category Max score ExperSoft IONA Visigenic

Platforms supported

Language bindings

Standards compliance

Usability and customizability

Functional features

Development issues

Business issues

Market acceptance

Cost and training

25

25

75

75

100

75

5O

5O

25

19.25

25.00

50.93

66.53

71.00

61.35

40.40

33.25

11.25

22.90

25.00

56.55

55.13

87.00

56.55

37.10

43.25

13.75

22.75

25.00

53.55

64.80

83.00

58.95

49.25

43.25

11.25

Totals 500 378.96 397.23 411.80

5-61



Figure 5-30 is a graph that indicates how the three final products fared in the vari-

ous categories. The graph depicts the actual scores received by each product in

each major category. The maximum potential score for each major category is also

shown on the graph.

Figure 5-30. Product Comparison by Category

0

o
t_

o

Cost and training

Market acceptance

Business issues

Development
issues

Functional
features

Usability and
customizability

Standards

compliance

Language bindings

Platforms

supported

0 20 40 60 80 100

Score

r •

n Visigenic
I[] IONA

IIExperSoft l

[i Max score

BINDING LANGUAGE EVALUATION

Java and C++ were considered because they are the most pervasive languages in

the industry today. Market acceptance and vendor support has made these two

languages the "language of choice."

Java was chosen for the client and C++ for the server because of the tools avail-

able and the platforms designated for the client (Window/PC) and Server

(Unix/Workstation).

SOFTWARE DISTRIBUTOR EVALUATION

Pull and push technologies were considered and evaluated based on the users of

the ASAC EA system, as well as types of updates and frequency of the updates. A

combination of both technologies may be used for updating software in the ASAC

EA system. Effectively, "pull" technology may be used for having the client-side

browser download the latest application from the server, upon login. "Push" tech-

nology may be incorporated for updating local stores of catalogs, model database

information, and system analyses.

5-62



ASAC EA Design

SOFTWARE LIBRARY EVALUATION

Third-party libraries were identified for both the client and server, as the devel-

opment environments and primary development language for both sides are dif-

ferent. The client-side libraries are Java-based, therefore the following Java

libraries have been identified: Java Reusable Components that are standard with

Symantec Visual Caf6 development environment. The server-side libraries are

C++ based, therefore the following C++ libraries have been identified: Rogue-

Wave C++ libraries; including standard, mathematical, and database; ANSI C++

runtime libraries. These software libraries were chosen based on market accep-

tance and favorable product reviews.

SOFTWARE DEVELOPMENT TOOL EVALUATION

Products identified are Symantec Visual Caf6 for object development on the cli-

ent, Rational Rose UML for overall design and C++ on HP-UX for object devel-

opment on the server. CORBA IDL will be used to specify interface and

interoperability. These development tools were chosen based on market accep-

tance and favorable product reviews.

DSSA Substage 5-2: Develop Each Module

Concurrent with product investigation and evaluation, the ASAC Design models

are being built using the Rational Rose CASE tool. Initially, a proof of concept

system is being produced that will be a running application that proves and dem-

onstrates the more complicated concepts of the ASAC EA system. In particular,

the key server modules for executing and running analyses and models in a dis-

tributed environment are being implemented with an integrated middleware prod-

uct (Visigenic). The high-level interfaces to the remainder of the system are well-

defined such that the system can be extended at a later date to include the re-

maining applications and integration to the legacy models. Taking this approach

allows us to minimize risk by implementing the more difficult core pieces of the

system up front.

DSSA Substage 5-3: Requirements, Verification, and Testing

Requirements, verification, and testing will be done as part of development in

fiscal year 1998.

DSSA Substage 5-4: Review and Iterate

Review and iterate the items developed in DSSA stage 5.

5-63





Chapter 6

Conclusion

We used published and respected methodologies to define a design for the ASAC

EA POC system. The design includes CRC cards, a role play script, a Use Case

diagram, Interaction (Sequence and Collaboration) diagrams, Package diagrams,

Class diagrams, State diagrams, and Deployment diagrams.

We also used a detailed evaluation process to start an Object Request Broker for

use in the ASAC EA system. Additionally, we selected binding languages, soft-

ware libraries, and development tools.

Work will begin on the next phase, development of the ASAC EA, in fiscal year

1998.

6-1





BIBLIOGRAPHY

Avellino, Ken. "Introduction to Client/Server Computing," Learning Tree Inter-

national, 369/CN(2)/D.2/601/D. 1, 1996.

Baer, Tony. "A Rational Approach to Objects" Software Magazine, November

1996.

Baer, Tony. "Components of Success?" Software Magazine, June 1997.

Bellin, David and Susan Suchman Simone. "The CRC Card Book," Addison-

Wesley, 1997.

Booker, Ellis. "NASA Center Offers Formula for Picking Middleware," Web

Week, May 12, 1997.

Carando, P. (1996a). An Object Request Broker Evaluation Instrument (white pa-

per No. 121). AT&T Solutions.

Carando, P. (1996b). Selecting an Object Request Broker for Large-Enterprise,

Distributed Computing (white paper No. 119). AT&T Solutions.

Carando, Patricia. "Selecting an Object Request Broker for Large-Enterprise,"

AT&T Solutions, 1996.

Carr, David F. "Object Wars," Internet World, February 1997.

Carr, David F. "An Object Sharing Standard that would Yield Net Harmony is

Underminded by all Vendors Serf-interest," Internet World Magazine, Febru-

ary 1997.

Carr, David F. "CORBA Application Architecture Is Outlined, VisiBroker 3.0

Fills Security Holes in Distributed Apps" Web Week, July 14, 1997.

Carr, David F. "Merging of Distributed Object Technologies" Web Week, July

14, 1997.

Clark, Scott. "File I/O with Jave: It Can Be Done!" Web Developer, May/June
1997.

Common Object Request Broker Architecture, OMG, July, 1995.

Common Object Services Specification, OMG, March, 1995.

Bib-1



CORBA (CommonObjectRequestBrokerArchitecture)andtheOMG (Object
ManagementGroup),http://www.acl.lanl.gov/CORBA/,February1997.

CORBA:IntegratingDiverseApplicationsWithin DistributedHeterogeneousEn-
vironments,IEEECommunicationsMagazine,Vol. 14,No. 2, February,1997.

CORBAnetandtheORB InteroperabilityShowcase,
http://www.omg.org/news/corbanet.htm,February1997

CORBAServices:CommonObjectServicesSpecification,Vol. 1,March 1995.

Core,Gael."PushingSoftwareLimits," SoftwareMagazine,June1997.

Dickman,Alan. "RacebetweenCorbaandActiveX/Dcom,"InformationWeek,
January20, 1997,Issue:614.

Dickman,Alan. "RacebetweenCorbaandActiveX/Dcom,"InformationWeek,
January20, 1997,Issue:614.

DomainSpecificSoftwareArchitectures (DSSA),

http ://www.sei.cmu.edu/arpa/evo/dssa-sum.html.

Evolutionary Software Development, http://www.sei.cmu.edu/arpa/evo.html.

Fowler, Martin, and Kendall Scott. "UML Distilled--Applying the Standard Ob-

ject Modeling Language," Addison-Wesley, 1997.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. "Design Pat-

terns--Elements of Reusable Object-Oriented Software," Addison-Wesley,
1995.

Gaudin, Sharon. "Cheveron is CORBA's biggest win; will link users to seismic

data," ComputerWorld Magazine, April 1997.

Gill, Philip J. "The Java Revolution at Two Years," Object Magazine, June 1997.

Larson, Don. "Putting Java in its Place," Web Developer, May/June 1997.

Lockheed Martin Advanced Concepts Center and Rational Software Corporation.

"Succeeding with the Booch and OMT Methods, A Practical Approach," Ad-

dison Wesley, 1996.

McCown, Michael and Jason Pritchard. "Corba Connection---Object protocol lets

companies mix and match Corba ORBs," Information Week, March 17, 1997,
Issue: 622.

Message Oriented Middleware Association, "Message Oriented Middleware

Glossary," http://www.moma-inc.org.

Bib-2



Bibliography

Meta Group, Software AG, "Internet, Networking, and Middleware Glossary,"

1996.

Millikin, Michael. "Distributed Objects: A New Model For The Enterprise," Data

Communication Magazine, February 1997.

Mowbray, Thomas J. and Ron Zahavi. "The Essential CORBA," Wiley, 1995.

Newman, David S. "Systems Management for the Distributed Object Environ-

ment" http://www.technium-inc.com/osmpart2.html.

Orfali, Robert, and Dan Harkey. "Client/Server Programming with Java and

CORBA," Wiley, 1997.

Orfali, Robert, Dan Harkey, and Jeri Edwards. "Instant CORBA," Wiley, 1997.

Orfali, Robert, Dan Harkey, and Jeff Edwards. "The Essential Client/Server Sur-

vival Guide," Wiley, 1996.

Orfali, Robert, Harkey, Dan, and Jeri Edwards. "The Essential Distributed Objects

Survival Guide," Wiley, 1996.

Radcliff, Deborah. "Sybase Breaks from the Pack," Software Magazine, June
1997.

Rational Software Corporation UML Resource Center, "UML Document Set Ver-

sion 1.1," September 1997, http://www.rational.com/uml/references/.

Roberts, Eileen, and James A. Villani. "ASAC Executive Assistant Architecture

Description Summary," NASA Contractor Report 201681, April 1997.

Rumbaugh, James, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. "Object-

Oriented Modeling and Design," Prentice Hall, 1991.

Savetz, Kevin M. "ActiveX vs. Java," Web Developer, January/February 1997.

Tracz, W. "Domain-Specific Software Architecture (DSSA) Frequently Asked

Questions (FAQ), Version 1.2 - ADAGE-IBM-93-12B." Loral Federal Sys-

tems, Owego, March 1995. http://www.sei.cmu.edu/arpa/dssa/dssa-

adage/faq/faq.html.

Tracz, W. "What is DSSA?" Loral Federal Systems, Owego.

http://www.owego.com/dssa/what-is-dssa.html.

Tracz, W. and L. Coglianese. "Domain-Specific Software Architecture Engineer-

ing Process Guidelines, ADAGE-IBM-92-02B." Loral Federal Systems,

Owego, 1992.

Bib-3



Tristram,Claire. "MiddlewaremakesC/Sappsreally work," DatamationMaga-
zine,August1996.

Tucker,MichaelJay."Bridgeyour legacysystemsto theWeb," Datamation,
March1997.

Whiting,Rick. "How IT Works--PushTechnology,"Client/ServerComputing,
June1997.

Willett, Shawn."Alliance to TackleCORBA Drawbacks,"ComputerReseller
News,March 17,1997,Issue:727.

Wingrove,E.R. HI, P.F. Kostiuk,R.C. Sickles,andD. H. Good."The ASACAir
CarderInvestmentModel (Revised),NS301RD2."LogisticsManagementIn-
stitute,June1996.

Bib-4



Appendix A

Acronyms

ACSYNT

AIA

AND

API

APP

ASAC

AST

ATA

ATC

ATM

CAASD

CASE

CGI

COE

CORBA

COSTMOD

CRC

CUA

DARPA

DBMS

DCE

DCOM

DES

DOT

DSSA

EA

FAA

Aircraft Synthesis Model

Aerospace Industries Association

Approximate Network Delay Model

Application Program Interface

Application Portability Profile

Aviation System Analysis Capability

Advanced Subsonic Technology program

Air Transportation Association

Air Traffic Control

Automated Teller Machine

Center for Advanced Aviation System Development

Computer Aided Software Engineering

Common Gateway Interface

Common Operating Environment

Common Object Request Broker Architecture

Delay Cost Model

Class-Responsibility-Collaboration

Common User Access

Defense Advanced Research Projects Agency

Database Management System

Distributed Computing Environment

Distributed Component Object Model

DataElementSet

Department of Transportation

Domain-Specific Software Architecture

Executive Assistant

Federal Aviation Administration

A-1



FIFO

FLOPS

GSSAPI

GUI

HP

HTML

H'I'I'P

IIOP

I/O

ff)L

IPC

JSIMS

LAN

LMI

NARIM

NASA

NIST

OMG

OMT

OOD

ORB

OSE

OSF

POC

QRS

RPC

SGI

SQL

STAT

S/W

TBD

TCP/IP

First In First Out

Flight Optimization System Model

Generic Security Services API

Graphical User Interface

Hewlett-Packard

Hypertext Markup Language

Hypertext Transfer Protocol

Internet Inter-ORB Protocol

Input/Output

Interface Definition Language

Inter-process Communication

U.S. Army's Joint Simulation System

Local Area Network

Logistics Management Institute

National Airspace Research and Investment Model

National Aeronautics and Space Administration

National Institute of Standards and Technology

Object Management Group

Object Modeling Technique

object oriented design

object request broker

Open System Environment

Open Software Foundation

Proof of Concept

Quick Response System

remote procedure call

Silicon Graphics, Incorporated

Structured Query Language

Small Transportation Aircraft Technology

Software

to be determined

Transmission Control Protocol/Internet Protocol

A-2



Acronyms

UML

UDP/IP

WAN

WWW

Unified Modeling Language

User Datagram Protocol/Internet Protocol

Wide Area Network

World Wide Web

A-3





Appendix B

Domain Dictionary
:}- ? ! ;

Alert Notification Service--a component of the Presentation Service that provides

presentation for user- and application-generated alerts and notifications.

Alerts Service--a component of the Common Support Service that provides

functionality for user- and application-generated alerts and notifications. It

routes and manages alert messages throughout the domain.

Analysis--1. The unit of work for an analyst using the Executive Assistant.

2. A class that manages the creation and instantiation of models and

their relationships.

Analysis Application--a software component that interacts with user input, mod-

els, and drivers to create analytical results.

Analysis Data--the part of an analysis document that contains the input and out-

put data from each stage of an analysis.

Analysis Document--a document that contains the analysis specification and

analysis data for a specific analysis; it is an instantiation of an analysis
template.

Analysis (Broker) Service--a component of the Distributed Computing Service

that allows applications to use methods or objects that are remote. It al-

lows objects to dynamically discover each other and interact across ma-

chines, operating systems, and networks.

Analysis Specification--manages specification data for a particular analysis.

Analysis Template--a generic document that provides an outline for performing

specific types of analysis; the user customizes the template for a specific

task and saves it as an analysis document.

Analyst--a person who interacts with the executive assistant to perform an analy-

sis, define an analysis, save data, halt an analysis, inquire about the state of

a running analysis, choose an analysis template, or choose an existing
analysis to run.

Application Architecture--the architecture for a single system (the result of in-

stantiating and refining a reference architecture).

B-1



ApplicationEngineering--theprocessof instantiating/refiningand/orextendinga
referencearchitecture.

ApplicationManagementService--acomponentof theManagementServicethat
maintainsadynamicconfigurationof applicationservices.It startstheap-
propriateapplicationservicesonappropriatemachines.It alsomonitors
applicationservicesto ensuretheyareavailableandperformingcorrectly,
restartslostservices,andstartsandstopsservices.

Audit Service--acomponentof theManagementServicethatprovidesaperma-
nentrecordof systemusage.It includesuseraccess,modelusage,error
logging,andtimestamping.

Authentication--verificationof theuser's validity.

Authorization---controlof useraccess.

Aviation SystemAnalysisCapability(ASAC)--a decisionsupportsystemcon-
sistingof models,databases,andtoolsusedto supportanalysisof theef-
fectsof advancedtechnologieson theintegratedaviationsystem.

Backsolver--atypeof driver thatfinds avaluefor oneor morevariables,givena
setof constraints.

CatalogRepository--databasecontainingtheregistrationsfor all modelsand
driverswithin theExecutiveAssistant.

CatalogService--acomponentof theDataServicethatregistersandassembles
modelanddriver descriptions,configurations,I/0, type,andaverageexe-
cutiontimerequirements.

Checkpoint--apoint alongananalysisstringatwhich theuserchoosesto suspend
theanalysisto examineits currentstate.Settingcheckpointslets the user

stop an analysis run in between running models. At such a point, the user

may view data both after it exits a model and before it enters the next

(there may be differences because of units translation).

Class--A template for an object containing variables and methods representing
behavior and attributes.

Class Library--A set of client programming tools. These tools can be used in a

Java program or Web page-embeddable lava applet.

Client--a software program used to contact and obtain data from a server soft-

ware program.

B-2



Domain Dictionary

Client-Server--a relationship between two processes in which one makes a re-

quest to the other. It is possible for the server to in turn make a request to

the client and thereby reverse the roles.

Common Support Service--a service that provides common system-level support

across all components of the EA system.

Communication Management Service--a component of the Communication

Service that provides overarching communication services between system

applications and other services.

Communication Service--a service that provides communication among all com-

ponents within the domain. It provides translation if more than one proto-

col is used. It also provides facilities for receiving data external to the

domain and sending data out of the domain.

Data Access and Connectivity Service--a service that provides DBMS connectiv-

ity; performs query transactions.

Data Administration Service--a component of the Data Service that allows a

System Administrator to enter, maintain, change, and remove data in re-

positories.

Data Flow Diagram--a graph on which nodes are processes and arcs are data

flows; part of a functional model.

Data Interchange Service--a component of the Distributed Computing Service

that provides specialized support for applications that may be dispersed

among computer systems in the network but must maintain a cooperative

processing environment.

Data Management Service--a component of the Data Service that provides

DBMS connectivity and performs query transactions.

Data Service--a service that provides data administration, management, in-

put/output, and distribution services.

Data Value--the actual value for some piece of data that is input or output of an

analysis or model.

DataConverter--defines a common interface for converting a data value from one
unit to another.

DataElement--a container for a piece of data.

DataElementSet--a collection of instances of DataElement.

B-3



DataRelationship----a class that observes a data source for changes in state. Gets

data values from data source (when it is in particular state), applies a

macro function to the data source, and sets the values in a data target.

DataRelationshipSpecification--manages specification data for a particular Da-

taRelationship.

DataStorage--manages storage and retrieval of data objects.

DataTransformer--defines a interface for a class that transforms input data values

into output data values.

Default Data--predefined input values for models.

Default Template--a template that contains no model or data.

Dependency Repository--a database containing the dependencies for all models

and drivers within the Executive Assistant.

Directory Service--a component of the Distributed Computing Service that

maintains a dynamic list of all application services, models, and drivers

supported by EA.

Distributed Computing Service--a service that provides specialized support for

applications that may be dispersed among computer systems in the net-

work but must maintain a cooperative processing environment.

Domain Engineering--the process of creating a DSSA (Domain Analysis and

Domain Modeling followed by creating a software architecture and popu-

lating it with components).

Domain Expert--an individual whose expertise and experience in the domain can

lend insight into various aspects of the domain.

Domain Model--any representation of elements in a domain that shows some re-

lationship among them. In DSSA this model usually consists of a lexicon,

ontology, and taxonomy of the terms that characterize the domain, in-

cluding objects, relationships, products, and perhaps behavioral terms such

as actions and events.

Domain-Specific Software Architecture--a software architecture with reference

requirements and domain model, infrastructure to support it, and process
to instantiate and refine it.

Driver--an interactive problem-solving software application that interfaces with

the analysis application; examples include an optimizer, backsolver, and

table generator.

B-4



Driver Application--an application that handles different types of drivers.

Driver Developer--a person who develops a driver.

Driver-wrapped Model--a model or set of models that a driver uses to perform an

analysis.

Dynamic Model--a model that describes the aspects of a system that change over

time; used to specify and implement the control aspects of a system.

Error Management Service--a component of the Management Service that pro-

vides error management for system level errors. It preserves the integrity

of the system.

Event--the occurrence of a condition, state change, or the availability of some
information, that is of interest to one or more modules.

Event Trace Diagram--a diagram that depicts a sequence of events and the ob-

jects exchanging the events; part of a dynamic model.

Execution Point--a point along an analysis string at which the user chooses to

perform an action; examples are a checkpoint, start point, and stop point.

Executive Assistant--subdomain of ASAC that encompasses applications with

which an analyst can use a series of one or more integrated models and

drivers to perform an analysis.

Extendability--the ability to add additional (new) functionality to a system.

File I/O Service--a component of the Data Service that provides file management

capability.

Functional Model--a model that describes the data value transformations within a

system; contains data flow diagrams.

Global--components that are available to all users.

Help Service--a component of the Common Support Service that provides help to
users.

History Document--a document that contains the results of running an analysis

using an analysis document.

Horizontal Growth--horizontal expansion of a system, e.g., 1 to 2 to 3 servers.

B-5



Inheritance--afeatureof object-orientedprogrammingsubclassesthatinherit the
non-privatevariablesandmethodsof all their superclasses.An objectim-
plicitly containsall thenon-privatevariablesof its superclassandcanin-
vokeall thenon-privatemethodsof its superclass.

Instance--anobject. When a class produces an object, the object is an instance of

the class.

Interface Definition Language (1DL)--the language developed by OMG to define

a component's interfaces with potential clients. It provides operating sys-

tem- and programming language-independent interfaces to all the services

and components that reside on a CORBA bus.

Intra-Application Communication Service--a component of the Communication

Service that provides communication capability among components within

the EA system.

Java--an object-oriented programming language modeled after C++. It is de-

signed to be small, simple, and portable across platforms and operating sys-
tems.

Load Balancing--a feature of the communications service that supports the ability

of distributed applications to spread their work-loads amongst two or more

duplicated applications components.

Load Balancing Service--a component of the Communication Service that pro-

vides load balancing among replicated models to ensure no model is over-

loaded.

Local---components that are local to a user's system; not available to all users.

Login--the account name used to gain access to a computer system.

Log in--to enter a computer system.

Logon Transparency--the use of a single password to gain access to all servers

and their services within a system (multiple system elements recognize

one log in).

Management Service--a service that provides system, application, error, perform-

ance, and security management.

Message--a bit of code sent between applications usually including some instruc-

tions for the receiving application.

B-6



Domain Dictionary

Message Service--a component of the Common Support Service that handles

message traffic (parsing and distribution) among applications. It provides

message queuing capability.

Model--represents the interface to and state of a model application.

Model--a standalone software application that provides non-interactive data

transformation.

Model Application--an application that handles different types of models.

Model Configuration--an execution path through a model that has unique inputs

and outputs; every model has at least one configuration.

Model Developer--a person who develops a model.

Model Option--a mechanism that specifies the configuration of a model.

Model Specification--contains information about the data used to execute a
model.

Network Service--a component of the Communication Service that provides a
connection between the external communications network and the EA

system.

Nominal Driver--the default driver that does not perform a function, e.g., not an

optimizer, backsolver, or table generator.

Object--a concrete instance of some class.

Object Diagram--a graph on which nodes are object classes and arcs are relation-

ships among classes; part of an object model.

Object Model--a model that describes the static structure of the objects in a sys-

tem and their relationships; contains object diagrams.

Observer--a class that defines an updating interface for objects that should be no-

tiffed of changes in a subject. In response to notification, observers query

the subject to synchronize its state with the subject's state.

Optimizer--a type of driver that finds a minimum or maximum value for a vari-
able.

Performance Monitoring Service--a component of the Management Service that

provides routine diagnostics and performance monitoring.

B-7



PresentationService--aservicethatprovidestheuserinterfacelayer.Here,the
userformulatesarequestandreceivesareply.This servicealsodisplays
alertinformationto theuser.

Queues--asimpledatastructurefor managingthetime-stageddeliveryof re-
queststo servers.Queuedelementsmaybesortedin someorderof prior-
ity. Clientsinsertitemsin thequeueandserversremoveitemsfrom the
queue,eitherassoonaspossible,or in batchor periodically.

QueuingService--acomponentof theCommunicationServicethatprovides
processqueuingto ensurefair accessto systemresources.

ReferenceArchitecture--asoftwarearchitecturefor afamily of applicationsys-
tems.

Registration--adescriptionandspecificationof amodelor driver;it is storedin
theCatalogRepositoryandusedby theCatalogService.

RemoteProcessService--acomponentof theDistributedComputingServicethat
providesremoteprocedurecall (RPC)capabilityto thesystem.

Replication--hostingof multiplecopiesof anapplicationor serviceon multiple
machinesto easenetworkcontentionandprocessorload.

Repository--adatabasethatcontainsthecatalog,template,anddependencyre-
positories.

Scalability--theability to addmoreof anexistingfunctionto asystem.

SchedulingService--providesthreadmanagement,queuing,andloadbalancing.

SecurityAdministrationService--acomponentof theManagementServicethat
maintainsaregistryof all authorizedusersthroughoutthedomainand
trackswhichfunctionseachuseror groupis allowedtoperform
(authorization).It assignspasswordprotection,modelsecurity,groups,
andpermissions.

SecurityService--acomponentof theManagementServicethatprovidesa single
login servicefor all systemsthroughoutthedomain.It authenticatesauser
andprovideslogontransparency.

Server--asoftwareprogramthatprovidesaspecificserviceto client software.A
singleservermachinecanrunseveraldifferentserversoftwareprogramsat
thesametime.

Software Distribution Service--a component of the Data Service that provides

electronic software distribution capability.

B-8



Domain Dictionary

Start Point--the point along an analysis string at which a user chooses to begin an

analysis.

State Diagram--a graph whose nodes are states and whose arcs are transitions

among states caused by events; part of a dynamic model.

State Observer--observes and records state information about its subject.

Stop Point--the point along an analysis string at which a user chooses to stop an

analysis.

Subject--a class that defines the properties of an object being observed. A subject

may have any number of dependent observers. All observers are notified

when the subject undergoes a change in state.

System Administration Service--a component of the Management Service that

provides the capability to configure, operate, maintain, and manage the lo-

cal configuration.

System Administrator--person who administers configuration of Executive As-

sistant applications, adds users, administers passwords, administers secu-

rity levels, and creates and administers model and driver registrations.

System Management Service--a component of the Management Service that pro-

vides system management and query governing and handles runaway que-
ries.

Table Generator--a type of driver that populates a table of variables with values.

Template Developer--a person who develops a template.

Template Repository---database containing globally available templates.

Thread--a unit of concurrency provided in a program. They are used to create a

programs execution environment that weaves together instructions from

multiple independent execution paths or "threads."

Thread Management Service--a component of the Distributed Computing Service

that provides thread management capabilities for applicable application
services.

Transaction Management Service--a component of the Communication Service

that supports creation and management of transaction logs and transaction

processing.

User Application--software component with which the user interacts with the

Executive Assistant.

B-9



User Interface Service--a component of the Presentation Service that provides

direct interaction with a user through windows, icons, menus, keyboard,

mouse, or other means.

Vertical Growth--vertical expansion, e.g., add additional models or clients to a

system.

Web Browser--software that interprets the HTML commands and displays the

page contents to a client.

B-IO



Appendix C

Message Broker Evaluation Supporting
Documentation
: i_i i iii_ii_!ii_iliiiiiiii_i ii ili iii!i!iiiii!i!ili_iii!:! _i!ii i ii _i iii ii!ii_iillii !ii_i:i !i iiliil ! ! i! ! i ¸I! iiiiii!if: ii i !i!!iil i!! _i ii!i!i !iii_iill_ !i! i!i i ¸!¸iiiiiiiiii! i! iii i _il!! iil ii i i iliili ii ii i! i i! !_!ii i i ii!!i!ii!illi:ii _i ill ii ii ill iiii iii:i i ii:ii_il: :i !i ! i!!!i i_ii:iii!! i!_i i ii!!i ! i i ii ii il

This appendix contains the following documentation:

Customer questionnaire

Evaluation test plan

Evaluation test procedures

Evaluation criteria matrix.

CUSTOMER QUESTIONNAIRE

We spoke with customers of ExperSoft and Visigenic to ask them questions about

the products under evaluation. We were not able to contact customers from IONA.

The customer references and completed questionnaires for ExperSofl and Visi-

genic are provided below.

ExperSoft

Response to Customer Questionnaire from Vlad Kroutik, Sapient Inc, Tel (617)

621-0200, email vkrout@sapient.com.

PROJECT-ORIENTED QUESTIONS

Q. For what project did you use this product?

A. Used PowerBroker with 3 client projects.

Q. What was the nature of the project (communication, finance, etc.)?

A. A database-oriented project.

Q. What was the size of the project?

A. About 20 servers and 95 clients.

C-1



Q. How did the product fit in the project overall architecture?

A. Utilize CORBA as the middleware architecture to connect these analysis serv-

ers together.

Q. How long was the project?

A. Started a year ago.

Q. What was your development environment (operating system, database, etc.)?

A. Servers running HP-UX 10.20 and Windows 95 clients.

Q. What was your runtime environment (if different than development)?

A. Same as development.

Q. Did you consider other products, and what was your criteria for choosing this

product?

A. DEC Object Broker. Scalability was the most important criteria.

Q. What percent of the overall development effort was dedicated to this product?

A. About 60%.

PRODUCT-ORIENTED QUESTIONS

Q. What capabilities in the product did you utilize?

A. Asynchronous processing and integration features with Rogue-Wave and DB

Tools.

Q. How did you utilize this product or products?

A. PowerBroker CORBA Plus on both client and server sides.

Q. How easy was it to install the product?

A. Easy enough, so far all ORB products use a command line interface.

Q. How easy was it to develop the project using this product?

A. Easy, especially using integration tools.

Q. What kind of problems did you run into during design and development?

A. Had to build our own trader service, since it was not available.

C-2



Message Broker Evaluation Supporting Documentation

Q. How easy was it to integrate this product with other products?

A. Easy.

VENDOR-ORIENTED QUESTIONS

Q. How often was the product being updated by the vendor? And did it affect de-

velopment?

A. Not Applicable

Q. How was customer support/response time during development and mainte-

nance phases?

A. Very responsive, had problems with previous projects utilizing IONA.

Q. What is your overall opinion about the product?

A. Scaleable, very robust.

Q. Would you recommend this product for future use in your organization?

A. Yes.

Visigenic

Response to Customer Questionnaire from Muhammed Rabi, Hughes STX Corp.,

Tel (301)441-4174.

PROJECT-ORIENTED QUESTIONS

Q. For what project did you use this product?

A. NASA Earth Observatory System (EOS).

Q. What was the nature of the project (communication, finance, etc.)?

A. Implement a proof of concept to replace the current DCE architecture with

CORBA-based middleware. Evaluate performance and scalability.

Q. What was the size of the project?

A. Unlimited. Initial phase of 2-3 science analysis servers.

Q. How did the product fit in the project overall architecture?

A. Utilize CORBA as the middleware architecture to connect these analysis serv-

ers together.

C-3



Q. How long was the project?

A. Started 3 months ago, still in evaluation phase.

Q. What was your development environment (operating system, database, etc.)?

A. NT 4.0, Sun Solaris 5.0, OODB.

Q. What was your runtime environment (if different than development)?

A. Same as development.

Q. Did you consider other products, and what was your criteria for choosing this

product?

A. Visigenic VisiBroker for C++, IONA Orbix and Orbixweb, DEC Object Bro-

ker. Chose the most popular CORBA products on the market.

Q. What percent of the overall development effort was dedicated to this product?

A. 100%.

PRODUCT-ORIENTED QUESTIONS

Q. What capabilities in the product did you utilize?

A. Naming and event services, waiting on trader service.

Q. How did you utilize this product or products?

A. Will use VisiBroker for C++ on the server side, and IONA OrbixWeb on the
client side.

Q. How easy was it to install the product?

A. Easy enough, so far all ORB products use a command line interface. RatiONAl

Rose might come up with a mapping to Java.

Q. How easy was it to develop the project using this product?

A. Not Applicable, still in evaluation phase.

Q. What kind of problems did you run into during design and development?

A. Have not yet tested interoperability between VisiBroker for C++ and Orbix-
Web.

C-4



Message Broker Evaluation Supporting Documentation

Q. How easy was it to integrate this product with other products?

A. Server Side--Integrated VisiBroker for C++ with OODB (ObjectStore) Client

Side--Used Jbuilder and Symantec Caf6 with OrbixWeb.

VENDOR-ORIENTED QUESTIONS

Q. How often was the product being updated by the vendor? And did it affect de-

velopment?

A. Not Applicable.

Q. How was customer support/response time during development and mainte-

nance phases?

A. Good for both of Visigenic and IONA. Visigenic has an excellent training pro-

gram.

Q. What is your overall opinion about the product?

A. Both are good.

Q. Would you recommend this product for future use in your organization?

A. I prefer Visigenic.

Q. Any other comments?

A. IBM is coming up with a new CORBA product in September called IBM

Component Broker, which is complete implementation of CORBA 2.0 and all its

services. It also includes a framework and an integrated set of tools.

EVALUATION TEST PLAN

This section contains the test plan that was used to demonstrate the client-server

communication capabilities of the ORBs. The test is a simple application, which

was developed to the CORBA 2.0 standard and uses CORBA 2.0 IDL.

The application, named "Count", consists of a server component and a client

component. The server component exports a method called "increment" that sim-

ply increments the value of a variable called "sum" and then returns the value to

the client. The client program does the following:

• Sets the initial value of the sum attribute.

• Invokes the increment method 1,000 times.

C-5



• Displaysthefinal valueof sumattributealongwith theaverageping time
it tookto incrementsumto 1,000.

Theevaluationtestis depictedin FigureC-1.

Figure C-1. Evaluation Test Diagram

Client executable Server executable

Count client sends request to count I [-- i_i_e_er ] 1

server to increment the sumattribute_ +__

Count server sends the new value

of sum message to the Count client

Upon sum attribute reaching 1,000,
the Count client echoes the time it

took to complete

EVALUATION TEST PROCEDURES

This section contains the test procedures for the following products:

• ExperSoft PowerBroker CORBA Plus (C++)

• ExperSoft PowerBroker Java Edition

• IONA Orbix (C++)

• IONA OrbixWeb (Java)

• Visigenic Visibroker for C++

• Visigenic Visibroker for Java.

Each test procedure was run on our development platform. All problems encoun-

tered during the installation of the product, building test scripts and running the

C-6



Message Broker Evaluation Supporting Documentation

test, plus any alterations to the CORBA 2.0 compliant application that were re-

quired to execute the application, were documented and considered in the overall
evaluation.

ExperSoft PowerBroker CORBA Plus (C++)

SERVER SIDE

CLIENT SIDE

Consists of the Server Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Insatiate an instance of the Object Implementation.

4. Creates a Server Instance.

5. Register the Server with the Basic Object Adapter.

6. Prints out a status message.

7. Waits for incoming clients.

Consists of the Count_i Class that does the following:

1. Define the "get" function to return the value of the attribute sum.

2. Define the "set" function to set the value of the attribute sum.

3. Define the "increment" function to increment the value of sum by 1.

Consists of the Client Class that does the following:

1. Initializes the Object Request Broker.

2. Resolve the URL Object reference.

3. Use reference as if it were a local instance of object implementation.

4. Sets the remote sum attribute to zero.

5. Calculates the start time.

6. Invokes the increment method 1,000 times.

C-7



SCENARIOSTEPS

7. Calculatestheelapsedtime.

8. Prints results.

1. Open two MS-DOS windows.

2. Change the directory for both windows to where the test scenarios are lo-
cated.

C:\work\exper\cplus

3. Select one window to run the Server using the interpreter.

> Server.exe

4. The following is displayed in the Server window:

opening server socket on port: 17337 ready.

5. Go to the other window and run the Client using the interpreter and by

adding a new account

>client 204.255.70.50 17337

6. The following is displayed in the Client window:

Setting Sum to 0

Incrementing

Avg Ping = X where X = the elapsed time in milliseconds

Sum = 1,000

ExperSoft PowerBroker Java Edition

SERVER SIDE

Consists of the ServerApp Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Insatiate an instance of the Object Implementation.

C-8



Message Broker Evaluation Supporting Documentation

4. Creates a Server Instance.

5. Register the Server with the Basic Object Adapter.

6. Prints out a status message.

7. Waits for incoming clients.

Consists of the Count_i Class that does the following:

1. Define the "get" function to return the value of the attribute sum.

2. Define the "set" function to set the value of the attribute sum.

3. Define the "increment" function to increment the value of sum by 1.

CLIENT SIDE

o

7.

8.

SCENARIO STEPS

Consists of the ClientApp Class that does the following:

1. Initializes the Object Request Broker.

2. Resolve the URL Object reference.

3. Use reference as if it were a local instance of object implementation.

4. Sets the remote sum attribute to zero.

5. Calculates the start time.

Invokes the increment method 1,000 times.

Calculates the elapsed time.

Prints results.

1. Open two MS-DOS windows.

2. Change the directory for both windows to where the test scenarios are lo-
cated.

C:\work\exper\java

3. Select one window to run the Server using the java interpreter.

> java ServerApp

C-9



4. Thefollowing isdisplayedin theServerwindow:

openingserversocketonport: 17337ready.

5. Go totheotherwindowandrun theClient usingthejava interpreter,and
by addinganewaccount.

> java ClientApp204.255.70.5017337

6. Thefollowing isdisplayedin theClientwindow:

SettingSumto 0

Incrementing

Avg Ping= X whereX = theelapsedtimein milliseconds

Sum= 1,000.

IONA Orbix (C++)

SERVER SIDE

Consists of the Server Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Creates an Server object.

4. Activates the newly created objects.

5. Prints out a status message.

6. Waits for incoming clients.

Consists of the Count_i Class that does the following:

1. Define the "get" function to return the value of the attribute sum.

2. Define the "set" function to set the value of the attribute sum.

3. Define the "increment" function to increment the value of sum by 1.

C-10



CLIENTSIDE

.

2.

3.

4.

5.

6.

7.

SCENARIO STEPS

1.

2.

3.

Message Broker Evaluation Supporting Documentation

Consists of the Client Class that does the following:

Initializes the Object Request Broker.

Locates a remote ORB.

Sets the remote sum attribute to zero.

Calculates the start time.

Invokes the increment method 1,000 times.

Calculates the elapsed time.

Prints results.

.

.

.

.

From the start menu select Orbix daemon.

Open two MS-DOS window.

Change directory for both windows to where the test scenarios are located.

C :\work\orbix\cplus

Select one window to run the Server using the Orbix command.

>putit count C:\work\orbix\cplus\server.exe

The following is displayed in the Server window.

Count Object Created.

Go to the other window and run the Client.

> client 204.255.70.50

The following is displayed in the Server window:

Setting Sum to 0

Incrementing

Avg Ping = X where X = the elapsed time in milliseconds.

Sum = 1,000.

C-11



IONA OrbixWeb (Java)

SERVER SIDE

CLIENT SIDE

SCENARIO STEPS

Consists of the Server Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Creates an CountServer object.

4. Activates the newly created objects.

5. Prints out a status message.

6. Waits for incoming clients.

Consists of the Countlmp Class that does the following:

1. Defines the "get" to return the value of the attribute sum.

2. Defines the "set" to set the value of the attribute sum.

3. Defines the "increment" to increment the value of sum by 1.

Consists of the Client Class that does the following:

1. Initializes the Object Request Broker.

2. Locates a remote ORB.

3. Sets the remote sum attribute to zero.

4. Calculates the start time.

5. Invokes the increment method 1,000 times.

6. Calculates the elapsed time.

7. Prints results.

1. From the start menu select OrbixWeb daemon.

C-12



Message Broker Evaluation Supporting Documentation

2. Open two MS-DOS window.

3. Change directory for both windows to where the test scenarios are located.

C:\work\orbix\java

4. Select one window to run the Server using the java interpreter.

putit count -java CountServer C:\work\orbix\java

5. Go to the other window and run the Client using the java interpreter, and

using the current host name.

> Java CountClient 204.255.70.50

6. The following is displayed in the Server window:

Setting Sum to 0

Incrementing

Avg Ping = X where X = the elapsed time in milliseconds

Sum = 1,000.

Visigenic Visibroker for C++

SERVER SIDE

Consists of the Server Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Creates an Server object.

4. Activates the newly created objects.

5. Prints out a status message.

6. Waits for incoming clients.

Consists of the Count_i Class that does the following:

1. Defines the "get" function to return the value of the sum attribute.

2. Defines the "set" function to set the value of the sum attribute.

C-13



3. Definesthe"increment"to incrementthevalueof sumby 1.

CLIENTSIDE

Consistsof theClientClassthatdoesthefollowing:

1. Initializes theObjectRequestBroker.

2. LocatesaremoteORB.

3. Setstheremotesumattributeto zero.

4. Calculates the start time.

5. Invokes the increment method 1,000 times.

6. Calculates the elapsed time.

7. Prints results.

SCENARIO STEPS

1.

2.

3.

From the start menu select VisiBroker Smart Agent.

Open two MS-DOS window.

Change directory for both windows to where the test scenarios are located.

C:\work\visi\cplus\

4. Select one window to run the Server using the java interpreter.

> Server.exe

5. The following is displayed in the Server window:

Count Object Created.

6. Go to the other window and run the Client using the java interpreter, and

by adding a new account.

> Client.exe

7. The following would get displayed in the Server window:

Setting Sum to 0

Incrementing

C-14



Message Broker Evaluation Supporting Documentation

Avg Ping = X where X = the elapsed time in milliseconds

Sum = 1,000.

Visigenic Visibroker for Java

SERVER SIDE

Consists of the Server Class that does the following:

1. Initializes the Object Request Broker.

2. Initializes the Basic Object Adapter.

3. Creates an CountServer object.

4. Activates the newly created objects.

5. Prints out a status message.

6. Waits for incoming clients.

The CountImp Class that does the following:

1. Defines the "get" function to return the value of the attribute sum.

2. Defines the "set" function to set the value of the attribute sum.

3. Defines the "increment" function to increment the value of sum by 1.

CLIENT SIDE

Consists of the Client Class that does the following:

1. Initializes the Object Request Broker.

2. Locates a remote ORB.

3. Sets the remote sum attribute to zero.

4. Calculates the start time.

5. Invokes the increment method 1,000 times.

6. Calculates the elapsed time.

7. Prints results.

C-15



SCENARIOSTEPS

1. FromthestartmenuselectVisiBroker SmartAgent.

2. Opentwo MS-DOSwindow.

3. Changedirectoryfor bothwindowsto wherethetestscenariosarelocated:

C:\work\visi\java

4. Selectonewindowto run theServerusingthejava interpreter.

> java CountServer

5. Thefollowing wouldgetdisplayedin theServerwindow:

CountObjectCreated.

6. Goto theotherMS-DOSwindow andrun theClient usingthejavainter-
preter.

> JavaCountClient

7. Thefollowing wouldgetdisplayedin theServerwindow:

SettingSumto 0

Incrementing

Avg Ping= X whereX = theelapsedtimein milliseconds

Sum= 1,000.

EVALUATION CRITERIA MATRIX

The Evaluation criteria matrix presents the results of the Message Broker Product
evaluation.

C-16



°_,

_5

C-17



-- °11

II

8,

O' O'

=,.,
--.r_
r_ w

_.-s

2

_4

8_

o

e

:.¢

u

e,i

g

_=

m

!

=

o
- g

i_=

C-18



C-19



amp.. [_:

ql _ mr

_:=+

x x

0'

m

+mm+.+ Im °+++

_c__..+, £,%
r.,

+++ +._

_+
++,

I+
j ++

c:+ ,,_

+-+._

,.+

.e_=_

c=

i-

da

!i+i

_._ _ -_'_.___

- _-- -3

0
w

++
i+

+

+

+

E

,c .__

:. .++++

+ I+
E

p

.---- E

_. .=
"_ _ "-,

+_ _-

+.+ + ++
i_, +.g_-

,.,+
+., _ "_c

++_+_+++

t_ © --,

__m
.,= _- m + ..'3-

I+-

i V v

ir_-

+++++

+r.,
=___

_.o

<

i l++0+_

+._

._e _e ._m

I: c c

C-20



C-21



!

,,11, c

,m t:

E

.=

,=,

c

,,4

I

,a

r..

a_

J_

m

i

g.

w

.!

 -ollllofl 

I1--_ "" -7.

i-

I-!°

liilll

II I-"P

C-22



ATTACHMENT A - CORBA ORB VENDOR

QUESTIONNAIRE RESPONSES

The following questions were asked to potential vendors as part of the CORBA ORB

product selection process. The responses from ExperSoft, IONA, and Visigenic are con-

tained in this attachment, following the list of questions. Note: we received detailed re-

sponses from BEA Systems, Inc., but they are not included in this attachment since BEA
was not a final candidate.



Contents

QUESTIONS TO VENDOR ........................................................................................... 3

RESPONSE FROM EXPERSOFT CORPORATION .......................................................... 10

RESPONSE FROM IONA CORPORATION .................................................................. 19

RESPONSE FROM VISIGENIC CORPORATION ............................................................ 32

2



QUESTIONS TO VENDOR

• PLATFORMS SUPPORTED

Server Side

• HP-UX 10.20 or above

• Windows NT

• SGI IRIX v5.3 or above

Client Side

• AIX

• HP-UX 10.20 or above

• Java Virtual Machine

• Macintosh 7

• SGI IRIX v5.3 or above

• Sun OS v5.4 or above

• Windows 3.1

• Windows95

• Windows NT

LANGUAGE BINDINGS

• Server Side

• C

• C++

• Java



_- Client Side

• C

• C"l"q-

• Java

STANDARDS COMPLIANCE

CORBA 2.0 Compliance

• Does the product support Static Method Invocation?

• Does the product support Dynamic Method Invocation?

• Does the product support CORBA Interface Repository?

• Does the product support Server Callbacks?

• What type of IDL to C++ mapping does the product support?

• What type of IDL to Java mapping does the product support?

• What type of API does the product support?

• Does the product support the Internet Inter-ORB Protocol (IIOP)?

• Will the product support Portable Object Adapter (POA)?

• Will the product support Interoperable Object Reference (IOR)?

• Does the product supply an OLE 2.0 bridge?

_- CORBA Services

• Life Cycle Service

Does the product provide operations for creating, copying, and deleting

objects?

• Persistent Service

Does the product provide an interface for storing objects on a variety
of storage servers?

• Naming Service

4



Does the product allow objects on the bus to locate other objects by
name?

• Event Service

Does the product allow objects to register and unregister dynamically
for events?

• Concurrency Control Service

Does the product provide concurrency control service?

• Transaction Processing Service

=:_ Does the product support transaction services?

• Relationship Service

Does the product provide operations to dynamically create associations

between objects that know nothing of each other?

• Extemalization Service

Does the product provide a standard way of getting data into and out

of an object?

• Query Service

Does the product provide query operations for objects?

• Security Service

=_ Does the product security service provide identification and authenti-
cation?

=_ Does the product security service support privilege delegation?

:=_ Does the product security service support transaction authorization?

:=_ If product does not support security service, does it integrate with an-

other Security Package, such as a DCE-based one?

• Licensing Service

=, Does the product provide operations for metering the use of objects?



• Properties Service

=_ Does the product provide operations to dynamically associate proper-

ties with object state?

• Timing Service

Does the product provide operations for defining and managing time-

triggered events?

• Trader Service

Does the product provide means for objects to publicize their services

and bid for jobs?

• Collection Service

Does the product provide interfaces to generically create and manipu-
late the most common collections?

USABILITY AND CUSTOMIZABILITY

• . Ease of Installation

• Does the product provide automated installation?

• Does the product install without damaging the current environment?

• How do you rate installation time with similarly complex and sized prod-

ucts on that platform?

Ease of Configuration

• Does the product provide some capability that allows additions or modifi-
cations to the infrastructure?

Portability (Same Vendor)

• Is the server-side code easily portable across platforms?

Portability (Different Vendor)

• Is the server-side code easily portable to different ORB products?

• Does the ORB have demonstrated interoperability with any other commer-
cial ORB?

6



• Documentation

• Is thedocumentationaccurateanddetailed?

• Are thedocumentationexampleseffectivein illustratingimportantusage
points?

• Doesthedocumentationprovideadequateexamplesfor all platformssup-
ported?

• Whataretheavailableformatsfor documentation?

• Doestheproductprovideprepackagedcodeor libraries?

• Performance

• Usingthecustomtestscript,whatis theaveragetimefor oneclient to call
aserver?

• Usingthecustomtestscript,whatis theaveragetimefor 10clientsto call
oneserver?

FUNCTIONAL FEATURES

• LoadBalancing

• Doestheproductsupportloadbalancing?

• Audit Trail

• Doestheproductprovideauditcapability?

• Doestheproductprovideinterfaceto audit operatingsystemactivities?

• Doestheproductprovideinterfaceto Sybaseauditcapabilities?

• ErrorManagement

• Doestheproductprovideerrorhandlingcapability?

• Doestheproductprovideinterfaceto operatingsystemerrors?

• Doestheproductprovideinterfaceto Sybaseerrors?

• Interoperability

• Doestheproductprovidecross-platformsindependence?

• Doestheproductprovidecrosslanguageindependence?



• Cantheproductbeusedwith anOLE client?

• Fault-resilience

• Doestheproductsupportfail-over(standbyservers)for fault recovery?

• Doestheproductsupportpersistentqueuing(allowingasynchronous,
guaranteedmessaging)?

• DEVELOPMENTISSUES

• DevelopmentEnvironment

• How easyis developmenteffort usingthisproduct?

• Is distributedobjectdevelopmentusingthis producteasilyintegratedwith
anopen,integrateddevelopmentenvironment?

• Do anylanguagedevelopmentenvironmentsgenerateIDL compatible
with this product?

• Doestheproductintegratewith ananalysis/designtool?

• DebuggingAids

• Doestheproductprovidemethodtracingat anygranularity?

• Cantheproductlog method/messagesto alog file?

• Cantheproducttracedaemonactivation?

• Cantheproducttracetheinstantiationanddestructionof objectsin the
server?

• BUSINESSISSUES

• TechnicalSupport

• Whatlevelof technicalsupportdoesthevendorprovide?

• Doesthevendorprovideon-siteconsulting?

• Doesthevendorprovideextendedserviceagreements?

• Whatis theturn-aroundfor vendorresponse?

• Are supportresponsesto customerquestionsaccurate?

8



• Doesthevendorresponseto customerproblemseffectively (urgent
patches)?

• Viability of theVendor

• Is thevendorwell-capitalized?

• Doesthevendorhavesufficienttechnicalstaffto evolveandsupportthe
product?

• Dedicationof theVendorto theProduct

• Doesthevendorhavean influential representationat OMG?

• Canthevendorrespondeffectively to changingneedsof theindustryor of
its keycustomers?

• Is theproductpartof thevendor'slong-term,strategicdirection?

• StrategicAlliancePartners

• Hasthevendorformedallianceswith significantthird-partyproviders?

MARKET ACCEPTANCE

• Maturity

• Whenwastheproductintroduced?

• How oftenwastheproductupdated?

• MarketShare

• Whatis thecurrentmarketsharerelativeto competitors?

• Whatis thesizeof thecurrentinstalledbase?

• Whatis the largestcurrentinstallationof theproduct?

COST& TRAINING

• For a 5-serverand40-clientASAC EA system,whatis theproductsuiteprice
range?

• What is thecostof oneweekof consulting/trainingperstudent?

• What is thecostof upgradesrelativeto currentversioncost?



RESPONSE FROM EXPERSOFT CORPORATION

PLATFORMS SUPPORTED

AIX

HP-UX v9.0 or above

Java Virtual Machine

Macintosh 7

SGI IRIX v5.3 or above

Sun OS v5.4 or above

Windows 3.1

Windows95

Windows NT

LANGUAGE BINDINGS

C

C++

COBOL

Java

Java Beans

PERL

STANDARDS COMPLIANCE

CORBA 2.0 Compliance

Does the product support the full CORBA 2 IDL?

Does the product support the full CORBA 2 API?

Does the product support the Internet Inter-ORB Protocol (IIOP)?

Does the product support TCP/IP?

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

10



Scalability

Canthecurrentproductbescaled-upto 10servers? Yes

Canthecurrentproductbescaled-upto 25servers? Yes

Canthecurrentproductbescaled-upto 100servers? Yes

Will scalabilityeffectperformance? Minimally

Doestheproductsupportreplicationof servers? Yes

Interoperability

Doestheproductprovidecrossplatformsindependence? Yes

Doestheproductprovidecrosslanguageindependence? Yes

Cantheproductbeusedwith anOLE client? Yes

Is therealimit on thenumberof clientsthata server
ORB productcansupport?

How manyclientscanaserverproductsupport?

Fault-resilience

Doestheproductsupportfail-over(standbyservers)
for fault recovery? Yes

Doestheproductsupportpersistentqueuing Yes

(allowingasynchronous,guaranteedmessaging)? Yes

USABILITY AND CUSTOMIZABILITY

Easeof Installation

Doestheproductutilize aneffectivescriptfor its installation? Yes

Doestheproductinstallswithoutdamagingthecurrentenvironment? Yes

Is theamountof timefor installationconsistentwith similarly
complexandsizedproductson theplatform?

Easeof configuration

Doestheproductprovidesomecapabilitythatallows
additionsor modifications to the infrastructure?

Theoretical no

Platform dictates

No, less time

Customizations are possible

11



Portability of Implementation (Same Vendor)

Is the server-side code easily portable across platforms?

Portability of Implementation (Different Vendor)

Is the server-side code easily portable to different ORB

product implementations?

Does the ORB have demonstrated interoperability with

any other commercial ORB?

Documentation

Is the documentation correct?

Are the documentation examples effective in illustrating

important usage points?

Does the documentation provide adequate examples

for all platforms supported?

What are the available formats for documentation?

What is the availability of prepackaged code or libraries?

FUNCTIONAL FEATURES

Concurrency

Does the product support multithreading

Is the thread package platform independent, e.g., POSIX compliant?

Does the product support distributed threads?

Database Interfaces

Does the product provide interfaces to SQL?

Does the product provide interfaces to Sybase?

Remote Access

Does the product provide remote app startup and shutdown?

Does the product provide scripting capabilities?

Yes.

It's been done

Yes

Yes

Yes

Yes

Paper/HTML

Today

Yes

Yes

No

No

No

BOA activation?

No

12



State Maintenance

Can the product save object state?

Software Distribution

Does the product support push technology?

Load Balancing

Does the product support load balancing

Audit Trail

Does the product provide audit capability?

Does the product provide interface to audit operating

system activities?

Does the product provide interface to Sybase audit capabilities?

Error Management

Does the product provide error handling capability?

Does the product provide interface to operating system errors?

Does the product provide interface to Sybase errors?

CORBA/Non-CORBA SERVICES

Life Cycle Service

Does the product provide operations for creating, copying

and deleting objects?

Is the product life cycle service CORBA 2.0 compliant?

Persistent Service

Does the product provide an interface for storing objects

on a variety of storage servers?

Is the product persistent service CORBA 2.0 compliant?

Naming Service

Does the product allow objects on the bus to locate other

objects by name?

13

No

Yes

Yes

No

No

No

Yes

No

No

Yes

Yes

Yes

Partially

Yes



Is the product naming service CORBA 2.0 compliant?

Event Service

Does the product allow objects to register and unregister

dynamically for events?

Is the product event service CORBA 2.0 compliant?

Concurrency Control Service

Does the product provide concurrency control service?

Is the product concurrency control service CORBA 2.0 compliant?

Transaction Processing Service

Does the product support some means of transaction management?

Is the product transaction service CORBA 2.0 compliant?

If product does not support transaction service, does it

integrate with a transaction processing product?

Relationship Service

Does the product provide operations to dynamically create

associations between objects that know nothing of each other?

Is the product relationship service CORBA 2.0 compliant?

Externalization Service

Does the product provide a standard way of getting data into

and out of an object?

Is the product externalization service CORBA 2.0 compliant?

Query Service

Does the product provide query operations for objects?

Is the product query service CORBA 2.0 compliant?

Security Service

Does the product provide security service?

Is the product security service CORBA 2.0 compliant?

14

Yes

Yes

Yes

No

No

Yes

Yes

Yes also

Yes

Yes

This year

This year

No

No

SSL

No



Does the product security service provide identification and
authentication?

Does the product security service support privilege delegation?

Does the product security service support transaction authorization?

If product does not support security service, does it integrate

with a other Security Package - such as a DCE based one?

Can the product integrate with a system that provides a

security component?

Licensing Service

Does the product provide operations for metering the use of objects?

Is the product licensing service CORBA 2.0 compliant?

Properties Service

Does the product provide operations to dynamically associate

properties with object state?

Is the product properties service CORBA 2.0 compliant?

Timing Service

Does the product provide operations for defining and managing

time triggered-events?

Is the product timing service CORBA 2.0 compliant?

Trader Service

Does the product provide means for objects to publicize

their services and bid for jobs?

Is the product trader service CORBA 2.0 compliant?

Collection Service

Does the product provide interfaces to generically create

and manipulate the most common collections.?

Is the product collection service CORBA 2.0 compliant?

No

No

No

No

Yes

No

N/A

This year

This year

No

No

This year

This year

Yes

No

15



DEVELOPMENT ISSUES

Development environment

How easy is development effort using this product?

Is distributed object development using this product

easily integrated with an open, integrated development environment? Yes

Do any language development environments generate IDL

compatible with this product?

Does the product integrate with an analysis/design tool?

Debugging Aids

Does the product provide method tracing at any granularity? Yes

Can the product log method / messages to a log file? Yes

Can the product trace daemon activation? Yes

Can the product trace the instantiation and destruction

of objects in the server? Yes

BUSINESS ISSUES

Technical Support

Does the vendor provide a dedicated hot-line phone service? Yes

Does the vendor provide electronic mail and fax service of

support request? Yes

Does the vendor provide World Wide Web support? Yes

Does the vendor provide on-site support advise/troubleshooting? Yes

Does the vendor provide extended service agreement? Yes

Is the vendor responsive? Always

Are support responses to customer questions accurate? Yes

Is consulting help on the product available? Yes

Does the vendor response to customer problems

effectively ( urgent patches)? Yes

Very easy

Yes

Ptech & Rose

16



Viability of the vendor

Is the vendor well capitalized?

Does the vendor have seasoned management staff?.

Does the vendor have sufficient technical staff to evolve and

support the product?

Can the vendor respond effectively to changing needs of the

industry or of its key customers?

Dedication of the vendor to the product

Is the product part of the vendor's long-term, strategic direction?

Strategic alliance partners

Has the vendor formed alliances with significant

third-party providers?

MARKET ACCEPTANCE

Maturity

When was the product introduced?

How often was the product updated?

Market Share

What is the current market share?

What is the size of the current installed base?

What is the largest current installation of the product?

What is the current market share relative to competitors?

TRAINING

Does vendor provide development training?

Does vendor provide maintenance training?

Does vendor provide administrative training?

Can unscheduled training be arranged?

Yes

Yes

Yes

Yes

Yes

Yes

1994

4 time a year

Under NDA only

Under NDA only

Under NDA only

Under NDA only

Yes

Yes

Yes

Yes

17



COST

Is product currently on GSA schedule?

If not, does vendor provide not-for-profit pricing?

WWW/Sales Dept.

WWW/Sales Dept.

Is the product suite competitively priced to deploy for ASAC?WWW/Sales Dept.

For a 5 servers and 40 clients ASAC AE system, what is

the product suite price range?

Is the extended service support included in price?

If not, what is the extended service support cost?

Is training included priced?

If not, what is training cost?

What is the price for technical support?

What is the cost of upgrades relative to current version cost?

WWW/Sales Dept.

WWW/Sales Dept.

WWW/Sales Dept.

WWW/Sales Dept.

WWW/Sales Dept.

WWW/Sales Dept.

WWW/Sales Dept.

18



RESPONSE FROM IONA CORPORATION

-PLATFORMS SUPPORTED

al Machine Yes.

Macintosh 7 Yes (but only with Orbix 1.3.5)

SGI IRIX v5.3 or above Yes.

Sun OS v5.4 or above Yes.

Windows 3.1 No.

Windows95 Yes.

Windows NT Yes.

LANGUAGE BINDINGS

C No (but it is possible to wrap legacy C applcations in C++)

C++ Yes.

COBOL Yes.

Perl No.

Java Yes.

Java Beans Will support in Q3/Q4 timeframe.

STANDARDS COMPLIANCE

CORBA 2.0 Compliance

Does the product supporSTANDARDS COMPLIANCE

CORBA 2.0 Compliance

ct support the full CORBA 2 API? Yes.

Does the product support the Interact Inter-ORB Protocol (IIOP)? Yes.

Does the product support TCP/IP? Yes.

Sealability

19



Can the current product be scaled-up to 10 servers? Scalability

urrent product be scaled-up to 25 servers? Yes.

Can the current product be scaled-up to 100 servers? Yes. There are Orbix applications

in production with several hundred servers and several thousand clients.

Will scalability effect performance? No. Orbix was designed to be both scaleable and

efficient. Adding new servers to the system has no effect on the performance of existing

servers.

Does the product support replication of servers? Yes. Replication of servers is sup-

ported through the various activation modes available. However, Orbix does not main-

tain state across replicated servers.

Interoperability

Does the product provide cross platforms indeplnteroperability

he product provide cross language independence? Yes.

Can the product be used with an OLE client? Yes. OLE servers are also supported.

Is there a limit on the number of clients that a server ORB product can support? There

is no Orbix imposed limit. Deployed Orbix applications exist with 5,000 clients.

How many clients can a server product support? Again, there is no Orbix imposed

limit. It then becomes a question of allocating system resources. We have demonstrated

2,000 clients simultaneously connected to a NT server.

Fault-resilience

Does the product support fail-over (standby serveFault-resilience

very?

Orbix is a tool for building scaleable distributed systems. It doesOrbix is a tool for

building scaleable distributed systems. It does not provide a shrink wrapped fault toler-

ant mechanism, instead it offers access to internal 'hooks'for incorporating fault toler-

ance functionality. This is in keeping with our approach to multi-threaded servers; we

expose the threading mechanism for maximum flexibility but also provide standard

threading filters to allow for common threading policies. In this respect we have a num-

ber of fault tolerant options, mostly using a feature called a 'Smart Proxy', but we can

also provide a standard smart proxy to handle fault tolerance.

Enhanced fault tolerance capabilities figure highly in IONA 's future direction with both

the Orbix Transaction Monitor (OTM) and the internal structure of Orbix. Orbix OTM is

20



IONA 's product offering in the TM space, which seeks to offer a coherent set of high-

value components on top of a proven, reliable communications infrastructure. Orbix

OTM, will support resilience of stateless servers in two ways: firstly, via activation

modes, and secondly via transparent re-establishment of failed connections.

OrbixTalk (IONA 's asynchronous messaging solution) also allows for communication

between applications that may or may not active at the same time. Using a store and for-

ward mechanism in conjunction with a persistent store this allows for the guaranteed de-

livery of messages to clients and also ensures they arrive in chronological order.

• Does the product support persistent queuing (allowing asynchronous, guaranteed mes-

saging)?

Yes. OrbixTalk supports persistent queuing via a store and forward mechanism and a

persistent store. OrbixTalk is based on IP Multicast technology making it both scaleable

and performant.

USABILITY AND CUSTOMIZABILITY

Ease of Installation

Does the product utilize an effective script for its installation? Yes. The install scripts

used are the standard ones for those platforms. For instance, Orbix for NT/95 has a

Microsoft certified install script, as does OrbixWeb. On Solaris, pkgadd is used, and

on HP-UX 10.20 swinstall is used.

• Does the product installs without damaging the current environment? Yes.

• Is the amount of time for installation consistent with similarly complex and sized

products on the platform? Yes.

Ease of configuration

• Does the product provide some capability that allows additions or modifications to the

infrastructure?

Portability of Implementation (Same Vendor)

Is the server-side code easily portable across platforms? Yes. Because all versions of

Orbix conform to the CORBA 2.0 standard the code will be similar across pla(orms.

The only differences result from differences in compilers. For example, if a compiler

does not support native exception handling then the code will be slightly different

than for a compiler that does.

Portability of Implementation (Different Vendor)

21



Is the server-side code easily portable to different ORB product implementations?

Currently, there are differences between the server side code that needs to be written

for different ORB vendors. For some ORBs, the different will be minimal, while for

others there may be a significant difference.

Does the ORB have demonstrated interoperability with any other commercial ORB?

Yes, we test in-house against five or six ORBs including NEO, Visigenics, HP ORB
Plus and liP's Distributed SmallTalk. There is a web-site

(http://corbanet.dstc. edu.au/) that demonstrated interoperability between all major

CORBA compliant ORBs.

Documentation

Is the documentation correct? Yes. Orbix has always been praised for the high quality

of its documentation. Orbix comes with both a Programming Guide and a compre-

hensive Reference Guide.

• Are the documentation examples effective in illustrating important usage points? Yes,

examples are given to illustrate all the topics discussed in the manuals.

Does the documentation provide adequate examples for all platforms supported? Be-

cause the use of Orbix is basically identical across UNIX pta(forms these are treated

as one, and a distinction is made between these and the use of Orbix on NT.

• What are the available formats for documentation? The documentation is available in

both hard copy and electronic formats.

• What is the availability of prepackaged code or libraries? I am not quite sure what

this refers to. Orbix comes with extensive fully coded examples.

FUNCTIONAL FEATURES

Concurrency

Does the product support multithreading Yes, Orbixfully supports multi-threading,

and the Orbix libraries are thread-safe. However, it is still the responsibility of the

application programmer to handle mutex' s etc. Threading is supported by Thread

Filters. A thread filter implements a particular threading policy. Orbix comes pre-

built thread filters supporting the following threading policies:

thread per request, pool of threads, thread per object, thread per client. These filters

can of course be customised to implement alternative policies.

22



Is thethreadpackageplatformindependent,e.g.,POSIXcompliant?By default Orbix

makes use of native threading packages, which often are POSIX compliant. Orbix

also supports the ability to switch in a third-party threading package such as

threads.h++ from RogueWave. These packages may or may not be platform inde-

pendent.

• Does the product support distributed threads? We at IONA have not heard of distrib-
uted threads.

Database Interfaces

Does the product provide interfaces to SQL? There are two approaches that can be

taken to integrate an ORB with a database. The simplest is "front-ending" where the

database is wrapped in IDL. A client makes a call on the IDL interface and within the

implementation code SQL calls are made on the database. This type of integration

requires no specific integration between the ORB and the database and of course is

possible with Orbix.

The second approach is to make Orbix objects transparently persistent in the data-

base, allowing the objects to live longer than the process in which they are contained.

This approach requires a specific integration with the ORB. Currently, there are a

few third-party companies with products that provide this support and handle the dif-

ficult issue of object-to-relatlONAl mapping. They are Persistence Inc, ONTOS and

UniSQL.

• Does the product provide interfaces to Sybase? Yes, the products from the companies

listed above provide an integration between Orbix and Sybase.

Remote Access

• Does the product provide remote app startup and shutdown The Orbix Manager pro-

vides the ability to kill and launch Orbix servers remotely.

Does the product provide scripting capabilities? Orbix itself does not provide script-

ing capabilities. However, it is certainly possible to use scripting languages with Or-

bix and many of our customers have done this.

State Maintenance

Can the product save object state? Yes, there is a feature in Orbix termed a Loader

that was designed specifically to allow object state to be both saved and loaded from

a persistent store or database. The Loader is used to write adapters to specific data-
bases.

Software Distribution

23



Does the product support push technology? Yes. OrbixTalk is our asynchronous mes-

saging product and it uses a push model to send messages from a talker to one or
more listeners.

Load Balancing

Does the product support load balancing Yes, there are a variety of mechanisms for imple-

menting load balancing in Orbix, all of which have little or no impact on client code:

1. The Naming Service.

Normal use of the Naming Service involves a client querying it for an object reference that cor-

responds to a simple ASCII name supplied by the client. The client receives the object reference

from the Naming Service and invokes on it directly. If the client supplies the name of a directory

(termed a context), a list of object references are returned. It is possible to override the imple-

mentation of the Naming Service so as to supply different rules as to how object references are to

be returned to the client applications. Obviously, one such rule could be to return the object ref-

erence for the server which has least load. IONA has developed a design pattern for implement-

ing a pool of servers via the Naming Service. This design pattern can be accessed on our public

web site at http:/Avww.lONA.com/Developers/Cookbook

2. Smart Proxies or Locators

An alternative to the Naming Service is to use a "Server Finder" object in conjunction with ei-

ther Orbix Smart Proxies or Orbix Locators, both of which are features of the standard product.

Instead of connecting to a server directly, the client interrogates the "Server Finder" object

which prescribes some load balancing scheme for the system. Thus the client application's only

interaction with the "Server Finder" is to ask it for an object reference to one of the "replicated"

servers. However, in the client application code it is desirable to get a reference to a

"replicated" server as transparently as possible.

Two techniques used for implementing this functionality are Smart Proxies and custom Locators:

• use a Smart Proxy to define an implementation for each member operation so that the op-

eration is handled by a "replicated" server reference supplied by the "Server Finder".

• use a Locator to hook into a _bind call with no host specified and again, use it to interrogate

the "Server Finder"for an object reference of one of the "replicated" servers.

3. The Orbix Object Transaction Monitor (OTM)

Orbix OTM will offer round-robin load balancing on both an intra-host and a cross-host

basis, lntra-host load balancing is achieved by notifying the ORB on server registration

that a particular server is to be serviced by N server instances. The ORB will then allo-

cate incoming requests between these servers on a round-robin basis. This is a simple

strategy, which has a straightforward information and location policy, but which none-

theless can be expected to yield significant performance [throughput] enhancements over

the no-load-balancing case.

24



Audit Trail

Does the product provide audit capability? Yes, the Orbix Filter feature allows all

Orbix calls to be logged.

• Does the product provide interface to audit operating system activities? No.

• Does the product provide interface to Sybase audit capabilities? No.

Error Management

• Does the product provide error handling capability? Yes, the CORBA specification

provides a very extensive set of exceptions that can be raised by CORBA calls. Fur-

ther, CORBA supports the ability for developers to create user-defined exceptions as

they see fit.

• Does the product provide interface to operating system errors? No.

• Does the product provide interface to Sybase errors? No.

CORBA/Non-CORBA SERVICES

Life Cycle Service

• Does the product provide operations for creating, copying and deleting objects? No.

However, we are currently evaluating customer interest in further CORBAservices

and this is probably high on the list. In the meantime it is possible to provide much of

the functionality in that specification but work is required in the part of the developer.

• Is the product life cycle service CORBA 2.0 compliant?

Persistent Service

• Does the product provide an interface for storing objects on a variety of storage serv-
ers? No. The Persistence Service is currently undergoing a second revision within the

OMG and we await the outcome of that work. In the meantime we have specific

adapters to existing databases.

• Is the product persistent service CORBA 2.0 compliant?

Naming Service

• Does the product allow objects on the bus to locate other objects by name? Yes, we

have a full implementation of the CORBA Naming Service.

• Is the product naming service CORBA 2.0 compliant? Yes, it is fully compliant with

the CORBA specification.

25



Event Service

Does the product allow objects to register and unregister dynamically for events?

this functionality is supported. Also, our implementation is based on 1P Multicast

technology making it very fast and scalable.

Yes,

• Is the product event service CORBA 2.0 compliant? Yes.

Concurrency Control Service

Does the product provide concurrency control service? This is not currently available

as a separate product but is implemented as part of (and bundled with) the Object
Transaction Service.

• Is the product concurrency control service CORBA 2.0 compliant? Yes.

Transaction Processing Service

Does the product support some means of transaction management? Yes, we have im-

plemented the CORBA Object Transaction Service in conjunction with Transarc. We

also have another implementation of the OTS which was done by Groupe Bull in
France.

• Is the product transaction service CORBA 2.0 compliant? Yes, both implementations

are compliant.

• If product does not support transaction service, does it integrate with a transaction

processing product? Orbix is also integrated with Transarc 's Encina TP Monitor.

Relationship Service

• Does the product provide operations to dynamically create associations between ob-

jects that know nothing of each other? This service is not currently supported.

• Is the product relationship service CORBA 2.0 compliant?

Externalization Service

• Does the product provide a standard way of getting data into and out of an object?

This service is not supported.

• Is the product externalization service CORBA 2.0 compliant?

Query Service

• Does the product provide query operations for objects? This service is not supported.

26



• Is the product query service CORBA 2.0 compliant?

Security Service

• Does the product provide security service? We are in the beta stage of our imple-

mentation of the CORBA security service. This will implement level I of the specifi-

cation.

• Is the product security service CORBA 2.0 compliant? Yes.

• Does the product security service provide identification and authentication? Yes.

• Does the product security service support privilege delegation? Yes.

• Does the product security service support transaction authorization? Yes.

• If product does not support security service, does it integrate with a other Security

Package - such as a DCE based one? Our initial implementation of the Security Serv-

ice will actually be built on top of DCE Kerberos.

• Can the product integrate with a system that provides a security component? Yes. Ifa

customer does not wish to avail of the CORBA Security Service the Filter feature of

Orbix allows other security mechanisms to be integrated. Many of our customers

have previously done this.

Licensing Service

• Does the product provide operations for metering the use of objects? We currently do

not support this service.

• Is the product licensing service CORBA 2.0 compliant?

Properties Service

• Does the product provide operations to dynamically associate properties with object

state? We currently do not support this service.

• Is the product properties service CORBA 2.0 compliant?

Timing Service

• Does the product provide operations for defining and managing time triggered-

events? We currently do not support this service.

• Is the product timing service CORBA 2.0 compliant?

Trader Service

27



Doestheproductprovidemeansfor objectsto publicizetheir servicesandbid for
jobs?Yes, we are currrently in the beta stage of implementing the CORBA Trader

Service.

• Is the product trader service CORBA 2.0 compliant? Yes.

Collection Service

• Does the product provide interfaces to generically create and manipulate the most

common collections.? We currently do not support this service.

• Is the product collection service CORBA 2.0 compliant?

DEVELOPMENT ISSUES

Development environment

How easy is development effort using this product? Orbix was designed to be easy to

use for programmers and our customers have found this to be the case. From the

point of view of the developer most of the code seems to be local programming. Orbix

removes the complexity of network programming from the developer.

Is distributed object development using this product easily integrated with an open,

integrated development environment? Orbix imposes no restrictions on the use of a

development environment. Once the IDL file is compiled the resulting generated code

is simply included with the developers code, who is then free to use his normal devel-

opment.

Do any language development environments generate IDL compatible with this prod-

uct? Yes, some of the current OOAD tools such as Rational Rose and Paradigm Plus

generate CORBA compliant code which by default is compatible with Orbix.

• Does the product integrate with an analysis/design tool? See the answer to the previ-

ous question.

Debugging Aids

• Does the product provide method tracing at any granularity? Yes, filters can be used

to monitor all the messages coming in for any method.

• Can the product log method / messages to a log file? Yes. Again, the use offilters al-

low logging to file of messages incoming for methods.

• Can the product trace daemon activation?

28



• Cantheproducttracetheinstantiationanddestructionof objectsin theserver?Yes,

Orbix has a mechanism called a loader that can allow code to be called when objects

are created or destroyed.

BUSINESS ISSUES

Technical Support

• Does the vendor provide a dedicated hot-line phone service? IONA provides dedi-

cated e-mail and fax support

• Does the vendor provide electronic mail and fax service of support request? Yes

• Does the vendor provide World Wide Web support? No

• Does the vendor provide on-site support advise/troubleshooting? Yes. IONA has a

seasoned team of consultants who can provide various types of on-site assistance.

Contact Steve Mosca at 800-672-4948for more information.

• Does the vendor provide extended service agreement? No

• Is the vendor responsive? Yes. IONA has a dedicated team of experienced customer

engineers whose goal is to respond to customer requests as quickly as possible.

• Are support responses to customer questions accurate? Yes. On the whole, our cus-

tomers have been very pleased with their responses.

• Is consulting help on the product available? Yes. Contact Steve Mosca.

• Does the vendor response to customer problems effectively ( urgent patches)? Yes.

IONA is first and foremost a customer driven company. Many of the patches we have

put out have been in direct response to customer requests.

Viability of the vendor

• Is the vendor well capitalized? Yes. IONA has no debt.

• Does the vendor have seasoned management staff'?. Yes. Our management staff brings

with it many years of experience in the software industry.

• Does the vendor have sufficient technical staff to evolve and support the product?
Yes.

• Can the vendor respond effectively to changing needs of the industry or of its key

customers? Yes. As mentioned above, IONA 's primary focus is on the success of its

customers. We have a seasoned team of executives whose sole responsibility is to keep

abreast of changes in the industry for the purpose of keeping our products superior.

29



Dedication of the vendor to the product

• Is the product part of the vendor' s long-term, strategic direction? Yes. Unlike many of

our competitors, the ORB is our core business, not a secondary product. IONA in-

tends to maintain its ocus on being the best ORB provider.

Strategic alliance partners

• Has the vendor formed alliances with significant third-party providers? Yes.

MARKET ACCEPTANCE

Maturity

• When was the product introduced? 1991

• How often was the product updated? Typically, the product is upgraded one to two

times a year.

Market Share

• What is the current market share? Approximately 55%

• What is the size of the current installed base? 16,000

• What is the largest current installation of the product? Boeing is currently our largest

user. They are using Orbix to tie together all of their software systems used to design
the 777.

• What is the current market share relative to competitors? IONA holds the largest mar-
ket share.

TRAINING

• Does vendor provide development training? Yes

• Does vendor provide maintenance training? N/A

• Does vendor provide administrative training? N/A

• Can unscheduled training be arranged? Yes

COST

• Is product currently on GSA schedule? No. However, many government agencies in-

cluding NASA have purchased Orbix open market.

30



• If not,doesvendorprovidenot-for-profit pricing?No, but we will provide discount

pricing.

• Is the product suite competitively priced to deploy for ASAC? Yes.

• For a 5 servers and 40 clients ASAC AE system, what is the product suite price

range? This would depend on the plaOeorms used, compiler, threading model etc.

• Is the extended service support included in price? No.

• If not, what is the extended service support cost? N/A

• Is training included priced? No.

• If not, what is training cost? $1990 or a public course, $16,000for an onsite (12 ppl

max.)

• What is the price for technical support? $750 per developer licencse for UNIX single

threaded, $975 for multi-threaded. $400 for NT.

• What is the cost of upgrades relative to current version cost? Minor upgrades are in-

cluded in the cost of support.

31



RESPONSE FROM VISIGENIC CORPORATION

2. ORB Evaluation Criteria

2.1 INTRODUCTION

As indicated earlier, the ABCD infrastructure and applications will be delivered in a

phased fashion beginning with a managed set of pilot projects. Therefore, only a subset

of the promised CORBA services will be required for the initial CORBA-enabled de-

ployment of ABCD. In addition, we are prepared to deliver our own service implementa-

tions, if needed, either on a temporary or permanent basis, if suitable commercial

implementations are not available.

This RFI, therefore, combines a list of immediate must-have requirements, as well as

more general, longer-term evaluation criteria. Given the relative immaturity of the ORB

market and associated products, we do not believe that a mere feature checklist or com-

parative matrix is particularly meaningful. A more helpful response will attempt to pro-

vide solutions to ABCD's requirements centered around the vendor's ORB offering.

First and foremost, our goal is to determine that a viable solution is immediately available

and to identify the vendors that can help deliver that solution. Second, we will look

closely at how these vendors, and possibly others that are running close behind, will be

able to help fulfill our longer range objectives. Understanding the vendor's ORB feature

set in the context of our requirements is central to accomplishing these goals.

2.2 ESSENTIAL REQUIREMENTS

The following list describes the essential features that an object request broker (ORB)

must have to be a candidate for ABCD's global infrastructure. The features listed below

should be considered the necessary, but not sufficient, set of capabilities for an ORB that

can support a large, enterprise-wide distributed computing endeavor.

• The ORB vendor must be a viable company, capable of providing long-term support.

• The ORB must be CORBA 2.0 compliant.

• The ORB must be present on Windows NT/95 and Sun Solaris platforms, as well as

various other UNIX platforms.

• The ORB must have C and C++ bindings.

• The ORB must have a JAVA/WWW binding or gateway.

• The ORB must have an OLE/COM or DCOM bridge.

• The ORB must have multithreading capability.

32



• The ORB must provide suitable LifeCycle and Object Location services (e.g. Naming,

Trading, and/or Factories).

• The ORB must provide an Event service.

• The ORB must facilitate server replication and fail-over.

• The ORB must have a Security service or strategy.

2.2.1 The ORB vendor must be a viable company, capable of providing

long-term support:

Justification: In buying a commercial ORB product, one acquires not only the software,

but a long-term relationship with a company. This company must provide support for the

current product and strategic evolution of the product to meet the developing needs of the

customers. If the company is not likely to be viable, the product is of limited value, no

matter what its technical merit. Product/company longevity and actual mission-critical

reference sites are also a good measure of a company' s viability.

Response: VisiBroker for C++ was released in 1995 and was the first CORBA 2.0 com-

pliant C++ ORB. VisiBroker for Java was released in early 1996 and was the first

CORBA 2.0 ORB written entirely in Java with full Java products running on both the cli-

ent and server. VisiBroker for Java and C++ are the leading ORB's today with the up-

coming shipment of approximately 20 million copies of Netscape' s Navigator 4.0 which

will bundle VisiBroker for Java runtime version and several million copies of Netscape's

SuiteSpot Servers which will bundle VisiBroker for Java and C++. In addition, other

strategic commitments have been made to Visigenic VisiBroker technology including

Oracle's decision to bundle VisiBroker within its NCA architecture, Novell's choice of

VisiBroker for IntranetWare, and Borland' s selection of VisiBroker for Java to bundle

with JBuilder. Reference contacts from Visigenic partners will be available to ABCD

upon request. Visigenic Software is headquartered in San Mateo, California and be-

came a publicly traded company in August 1996. Revenue for the In'st nine months of

fiscal 1997 increased 248% from the comparable period of the prior year to $11.5 million.

Revenue for the third quarter of fiscal 1997 was $4.8 million, representing a 336% in-

crease over revenue in the comparable period of 1996.

2.2.2 The ORB must be CORBA 2.0 compliant:

Justification: Adherence to the CORBA 2.0 standard promises interoperability between

independently developed applications across heterogeneous networks of computers. The

CORBA standard has wide adoption by 700+ companies. This extensive support gives

some assurance of (eventual) interoperability of CORBA ORBs and plug-and-play capa-

bility amongst conforming products.

33



Response:VisiBroker for C++isCORBA2.0compliant.VisiBrokerfor Java3.0will be
the first Java ORB that conforms to the new IDL-to-Java mapping. As soon as the CORBA

conformance tests are finalized we will work diligently to ensure that VisiBroker complies.

2.2.3 The ORB must be present on Windows NT/95 and Sun Solaris platforms,

as well as various other UNIX platforms:

Justification: ABCD's system currently supports Windows NT/95 and Solaris clients, as

well as Solaris servers. In addition, we will require the ability to deploy Windows NT

and other UNIX branded servers. Direct ORB support for Windows 3.1 would be highly

advantageous; however, we are willing to consider other options that provide Windows

3.1 integration.

Response: VisiBroker runs on a variety of operating systems, including Windows NT,

Windows 95, and a large number of UNIX platforms, including Sun Solaris. Below is a

summary of all the platforms VisiBroker runs:

VisiBroker for C++ 2.1

Platform Vendor Architecture OS/Version Compiler

Sun SPARC Solaris 2.4, 2.5, 2.5.1 SPARCworks C++ 4.0.1,
4.1

SunOS 4.1,4.1.4

Microsoft Intel/Win32 Window95, NT 3.51,4.0 Visual C++ 4.1,4.2

Watcorn C++ 11.0 (TBD)

HP PA-RISC HP-UX 10.01, 10.10, 10.20 C-front A.10.22 and later

[ANSI] aC++ (TBD)

IBM RS6000 AIX 4.1, 4.2 C Set++ 3.1

SGI MIPS IRIX 6.2 MIPSpro C++ 7.1

Digital Alpha Digital UNIX 3.2f DEC C++ 5.1, 5.5

34



VisiBroker for C++ 3.0

Platform Vendor Architecture OS/Version Compiler

Sun SPARC Solaris 2.5, 2.5.1 SPARCworks C++ 4.1,
4.2

Microsoft Intel/Win32 Window95, NT 3.51,4.0 Visual C++ 4.1,4.2, 5.0

Watcom C++ 11.0 (TBD)

HP PA-RISC HP-UX 10.10, C-front A.10.22

10.20 (GA + 6 weeks) [ANSI] aC++

IBM RS6000 AIX 4.1, C Set++ 3.1 (or latest)

4.2 (GA + 6 weeks)

SGI MIPS IRIX 6.2 (TBD) MIPSpro C++ 7.1 (or lat-

est)

Digital (TBD) Alpha Digital UNIX 3.2 and 4.0 DEC C++ 5.5 (or latest)

35



*VisiBroker for Java 1.2---JDK 1.0.x compatible (not JDK 1.1)

Platform Vendor Architecture OSNersion

Sun SPARC Solaria 2.4, 2.5, 2.5.1

Microsoft IntelNVin32 Window95, NT 3.51,4.0

HP PA-RISC HP-UX 10.01, 10.10

IBM RS6000 AIX 4.1

SGI MIPS IRIX 6.2

Digital (TBD) Alpha Digital UNIX 3.2 (not planned)

*requires OSAgent running on some server

VisiBroker for Java 3.0

*Platform Vendor Architecture

Sun SPARC

Microsoft IntelNVin32

HP PA-RISC

IBM RS6000

SGI MIPS

Digital (TBD) Alpha

* plus any other platform with a JVM 1.0 or

OS/Version

Solaris 2.5, 2.5.1

Window95, NT 3.51,4.0

HP-UX 10.10, 10.20 (Q3)

AIX 4.1,4.2 (Q3)

IRIX 6.2 (Q3)

Digital UNIX 4.0 (not planned)

Higher, OSAgent not required

2.2.4 The ORB must have C and C++ bindings:

Justification: This is almost a given because all the commercial ORBs have a C++

binding for the current version of the CORBA standard. The previous version of the

standard provided only a C binding; ORBs compliant with this earlier standard would re-

quire developers to manipulate C structures rather than objects, eliminating many of the

benefits of object technology and increasing code maintenance effort and cost. However,

ORBs that offer both bindings facilitate integration with various RAD presentation tools

(e.g. Visual Basic), as well as legacy applications, thereby providing for true enterprise

interoperability.

Response: Visigenic's VisiBroker for C++ supports C++, Visigenic's VisiBroker for

Java supports Java and

Smalltalk support is provided by DNS. VisiBroker and the DNS ORB can interoperate.

2.2.5 The ORB must have a JAVA/WWW binding or gateway:

36



Justification: The growing popularity of distributed computing applications for the In-

ternet or for enterprise-wide Intranets requires that an ORB provide such a gateway to its

backend capability. While a script activated by an HTML interface may serve as a bridge

technology, a script is inconsistent with the dynamic, downloadable nature of current

Web technology, epitomized by JAVA.

Response: The IIOP GateKeeper allows Java clients (built using VisiBroker applets) and

servers running with any Java 1.0 or better compatible browser to be transparently avail-

able to other CORBA objects, even when a firewall is in place.

For security reasons, web browsers are only allowed to communicate with the host speci-

fied in the URL (the sandbox model). By acting as an IIOP proxy, the GateKeeper allows

client applets to effectively communicate with any other host. Each client operation re-

quest, targeted to an object running on another host, is sent to the GateKeeper, which

forwards the request to the appropriate server and returns the response.

If there are Firewalls present the GateKeeper also supports HTTP tunneling, which en-
ables a client to communicate

through a fh'ewall that only allows HTTP communication. If a client attempts to bind to

an object and the IIOP-style communication fails, the IIOP request will automatically be

encapsulated in an HTTP-style request. The GateKeeper, upon receiving an encapsulated

IIOP request, will automatically detect that HTTP tunneling is being used.

The GateKeeper supports callbacks (callback from a server to a client) A callback can

occur when a client application sends an object reference to a server and, in response, the

server might need to invoke an operation on the object reference. A message is then sent

to the client application.

When a distributed object is exported through the Gatekeeper, a proxy in the Gatekeeper

is dynamically created and the client communicates with the proxy, instead of directly

with the object. The proxy simply forwards the request to the real distributed object.

Using the VisiBroker Gatekeeper is simple and transparent. There are no application

level APIs to the Gatekeeper, nor is it necessary to maintain any configuration files. Ap-

plications can create distributed objects and pass them around as they can within the In-

tranet.

2.2.6 The ORB must have an OLE/COM or DCOM bridge:

Justification: Integration with the predominant desktop computing environments - Win-

dows 3.1, Windows NT, and Windows 95 - is a paramount concern for any integration

facility. Thus, an ORB must be able to address the needs of an existing installed base of

clients that utilize Windows machines while providing access to globally-distributed TBU

servers.

37



Response:TheVisigenicCOM_CORBABridge(VisiBridge)enablesa COM clientap-
plicationto useaCORBA server.TheCOM client applicationmaybeoneof thesetypes:

• anOLE Automationcontrollerlike Visual Basic,Excel,orPowerBuilder

• acustomapplicationwritteneitherin C++ or Java, using direct calls on COM in-
terfaces

Visigenic's COM_CORBA Bridge includes a Bridge Wizard that creates bridge objects

automatically without any programming. The bridge objects that are created using the

Bridge Wizard may be one of two types:

• an ActiveX control

• a standalone DCOM server

VisiBridge supports three type of bridging models:

= ActiveX control bridge object, as a DLL, is an in-process server. The DLL is loaded

into the COM client application's process. The bridge object as an ActiveX control

communicates with the CORBA server using IIOP. HOP (Internet Inter-ORB Proto-

col) is a protocol standard which will be mandatory for all CORBA 2.0 compliant

platforms.

. The bridge object as a standalone DCOM server. The bridge object is an executable

located on the same machine as the COM client application-it is not an in-process

server. The COM client application communicates to the bridge object using LRPC

(light-weight RPC). The bridge object communicates to the CORBA server, which is

located on a remote server, using HOP.

. The bridge object is a standalone DCOM server located on the remote server with the

CORBA server. The COM client application, on the local machine, communicates to

the bridge object using DCOM. The bridge object communicates to the CORBA

server using IIOP.

Note: The bridge object in the second and third models is the same. The differ-

ence is in its location. In the second model the bridge object is on the same ma-

chine as the COM client application that makes it a COM server. In the third
model, it is on a different machine than the one where the COM client is installed

making it a DCOM server.

Later during 1997, Visigenic will allow for two-way bridging, CORBA objects accessing

COM/DCOM objects.

38



2.2.7 The ORB must have multithreading capability:

Justification: Multithreading is a minimum capability for supporting large-scale appli-

cations. Multithreading capability can take advantage of multiple processors, when they

exist, but can also more effectively utilize a single processor by enabling lightweight task

switching. The ability to provide multithreading to systems that are natively not mul-

tithreaded (i.e., Windows 3.1) is also paramount.

Response: The following describes VisiBroker for Java and C++, thread and connect

management schemes (Versions 2.0 and 3.0).

VisiBroker 2.0 Model Connections

When a 2.0 client binds to a server, a single connection is created. In a single-threaded

client, all calls from that client to the same server process will reuse an existing client

connection. For example, if a single-threaded client has references to two objects in the

same server process, and the client makes calls on each object, both calls are made on the

same connection.

However, in a multi-threaded client, a new connection is created when a bind or clone is

performed in a new thread. Thus, if a client creates two threads, and in each one, binds to

two objects in the same server process (as described above), two separate connections

will be created. A new connection would also result if one thread performed the bind,

and another thread calls clone( ) on the resulting object reference. Note that even in a

multi-threaded client, a given thread can only create one connection to a given server

process. Thus, binds to objects in the same server process or cloning object references

will not cause new connections to be created, unless a new client thread has been created.

In the 2.0 model, multiplexing over a single connection can occur when multiple calls are

made to the same server process. This means the client issues a single request and the

requesting client thread blocks on the connection until a response is received. So even

though requests to more than one server object, for example, are being multiplexed on a

single connection, each request must complete before the next one is allowed to initiate.

Server Threads

When a connection is created to a 2.0 server, a worker thread is created on behalf of that

connection. It exists as long as the connection exists, and is destroyed when the connec-

tion is destroyed. Thus, there is a one-to-one correspondence between connections to a

server process, and the number of worker threads for a server. If 50 connections are cre-

ated to a given server process, 50 threads will be created on their behalf, regardless of

39



VisiBroker 3.0 Model Connections

3.0 simplifies client connections in that all client threads in a process share a single con-

nection to a server process. Thus, separate threads multiplex over one connection, even if

they perform binds. This is not the case, of course, if the client explicitly calls clone().

Connections in the server process can be adjusted dynamically, allowing a maximum

number of connections and connection recycling of the least recently used connections.

Connection recycling is handled transparently; there is no need for developers to code for
this situation.

Multiplexing in the 3.0 model has been enhanced over 2.0, and as a result, calling clone

( ) and explicitly creating a new connection is rarely necessary. In 3.0, multiple requests

can be initiated without intermediate responses. So over the same connection, the client

can initiate several requests to a server process (presumably to multiple server objects),

and as each response is received by the client, the results are handed off to the appropriate

client thread. This can result in significant performance enhancement, and requires fewer

connections to the server since regardless of the time it takes to service a request, a single

connection will return the results as fast as separate connections would have done.

Server Threads

3.0 offers two BOAs that differ by their thread policy. The thread-per-session BOA

(named "Tsession") offers the same thread policy as 2.0 (see Server Threads for 2.0 de-

scribed above). The new BOA in 3.0 is the thread-pool BOA (named "Tpool"). Instead

of creating threads per connection, threads are allocated as needed but, when the connec-

tion closes, threads are returned to a pool and not destroyed. Thus, threads are used on

per request, resulting in better performance across fewer threads. For example, 50 clients

may use far fewer than 50 threads to perform work on the server objects in the process.

By default, the pool continues to grow as multiple simultaneous requests are serviced, but

the size of the thread pool can be adjusted from the server at runtime.

Performance Differences Between 2.0 and 3.(b--Clients

On the 2.0 client side, a client using multiple object references to the same server process

uses the same connection for all calls unless it creates separate threads and performs a

bind() or clone(). Thus, to achieve parallel calls, a client ends up creating new connec-

tions resulting in additiONAl resources.

In 3.0, clients multiplex requests on the same connection to a server process unless they

explicitly issue a clone(). Since the multiplexing behavior allows client requests to be

serviced out of order, the performance of this system looks to the client as though each

request was issued on a separate connection. For best performance, the server process

should be using the thread pool BOA so that it can service each request in a separate

thread if necessary. If the server uses the thread-per-session BOA, since only one con-

nection is created, a single thread will service all requests and the client multiplexing will

not be useful.

40



Performance Differences Between 2.0 and 3.0---Servers

On the 2.0 server side, servers use the thread-per-session model, which means that they

consume threads based on the number of connections. Multiple requests that come in on

the same connection are serviced serially, because only one thread is associated with that

connection. And when clients/connections are idle, their associated threads are idle.

In 3.0, the thread-pool BOA creates threads based on simultaneous requests rather than

the number of outstanding connections. The number of threads can be adjusted dynami-

cally, giving the server process maximum flexibility. In a typical scenario, a server has

several clients connected to it and is servicing requests on an occasiONAl basis. Since

the number of threads are based on the number of concurrent requests, fewer threads are

allocated in the server, and these threads are busier more often since they aren't tied to a

specific connection.

Multi-threading and Windows 3.1

A multi-threaded server can implement a complex Windows user interface either directly

on the Win32 API or using MFC.

A key point in building a multi-threaded server with an MFC-based Windows user inter-

face is that only certain threads may do user interface update. Within an MFC application,

either the main application thread or a CWinThread-derived class that the application cre-

ated may do user interface updates. These restrictions are because MFC threads contain

thread-local storage important in doing user interface updates. Performing a user interface

update from a non-MFC thread causes errors because the system does not have the re-

quired local storage within the thread.

Because VisiBroker for C++ creates a worker thread for each incoming connection, these

threads are not MFC threads. Such a worker thread cannot perform user interface updates

directly.

It is straightforward to interface between VisiBroker threads and MFC threads. The Visi-

Broker thread can post an invalidate message to the window to update. The message may

contain either the needed information for update or the two threads may use a common

object or data structure to pass information.

2.2.8 The ORB must provide suitable Lifecycle and Object Location services

(e.g., Naming, Trading, and/or Factories):

Justification: Location-independent transaction routing is a fundamental capability of

any enterprise-scale ORB. Trading provides the richest set of features to unambiguously

identify and utilize objects. Nonetheless, Lifecycle services are important in their own

right, and various combinations of Lifecycle and Naming can provide comparable func-

tionality.

41



Response:TheOMGLifeCyclespecdefinesastandardizedsetof LifeCycleoperations
suchasmoveandcopythatanobjectmaysupportandconventionsregardingobjectfac-
toriesthatanapplicationcanconformto. Thereis not, per se,anythingthatcanbe im-
plementedasaservicelibrary thatis linked intoa serverbecausetheimplementationof
the lifecycle interfaces are usually application specific or at least involves a complex in-

teraction of a number of services and ORB functions that are not easily encapsulated.

Including the client stubs as part of the VisiBroker 3.0 Developer products is under con-

sideration. Note that providing these stubs is primarily a developer convenience since the

developer can generate them anyway by taking the lifecycle IDL definitions and compil-

ing them using the IDL compiler.

VisiBroker's Smart Agent (OSAgent) is a dynamic, distributed directory service that pro-

vides facilities for both client applications and object implementations. When a client ap-

plication invokes the bind method on an object, the OSAgent locates the specified

implementation and object so that a connection can be established between the client and

the implementation. Object implementations register their objects with the OSAgent so

that client applications can locate and use those objects. When an object or implementa-

tion is destroyed, the OSAgent removes them from its list of available objects.

An OSAgent may be started on any host. To locate an OSAgent, client applications and

object implementations send a broadcast message, and the first OSAgent to respond will

be used. Once an OSAgent has been located, a point-to-point UDP communication is es-

tablished for registration and look-up requests. The UDP protocol is used because it con-

sumes fewer network resources than a TCP connection. All registration and locate

requests are dynamic, so there are no required configuration files or mappings to main-
tain.

If you run more than one instance of the OSAgent on a local network and one of those

agents becomes unavailable, all object implementations registered with that agent will be

automatically re-registered with another agent. Likewise, client applications using an

OSAgent that becomes unavailable will be automatically switched to another agent by

VisiBroker. No special coding techniques are required to take advantage of this OSAgent

fault-tolerance, as long as the OSAgent is running on more than one host on your local
network.

LOCATION SERVICE COMPONENTS

The Location Service is accessible through the CORBA interface Agent. Agent methods

can be divided into two groups, those that query an OSAgent for data describing in-

stances, and those that register and unregister triggers. Triggers are a notification mecha-

nism whose methods are defined in the Agent and TriggerHandler interfaces. Whereas

queries can be employed in many ways, triggers are special-purpose, and are used by

comparatively few developers.

42



THE AGENT

The bulk of the Agent methods constitute a simple query facility; you invoke the method

that a) identifies the instances you want, and b) returns the data you want for those in-

stances. Each Agent query method returns a sequence of one of the following:

• Object reference: You can use an object reference to invoke an instance found by the

OSAgent.

Desc: An instance description; a struct containing the instance's full description; its

interface, its name, its host and port, an object reference, and whether it is running or

can be activated.

• string: Host names are returned as strings.

NOTE: Earlier versions of the VisiBroker ORB used IDL interface names to identify in-

terfaces, but the Location Service uses repository id instead. To illustrate the difference,

if an interface name is

: :module l : :module2: :interface,

the equivalent repository id is

ID L :modu le l /module 2/in te rf ace : l. 0.

Triggers

A trigger is a means of learning when a specified kind of instance becomes accessible. It

is an asynchronous alternative to polling an Agent, and is typically used to recover after

the connection to an object has been lost.

To register a trigger, you pass a description of the instance you want, and the Trigger-

Handler object you want invoked when the instance becomes available. The TriggerDesc

can contain any combination of repository id, instance name, and host; the more fields

you provide values for, the more particular your specification of the instance. For exam-

ple, a TriggerDesc containing only a repository id matches any object that satisfies the

interface; adding an instance name tightens the specification, and adding a host name

tightens it further one instance.

Naming Service

Client applications normally bind to objects they wish to use by specifying an interface

name. The naming service allows an object implementation to associate one or more ar-

bitrary names with each of the objects it offers. Client applications can then use the nam-

ing service to locate these ORB objects by their bound name rather than by their interface

name.

43



The naming service organizes names in much the same way that files are organized in a

file system. A name is always bound to an object within a naming context, which is

similar in concept to a directory in a file system. Each naming context contains a list of

named objects, which is similar to the way a directory contains files in a file system.

Naming con-texts may also contain other naming contexts, just as a directory may contain

sub-directories. The result is a hierarchical namespace that can be traversed to locate a

desired object. The naming system has no concept of a root naming context, unlike a file

system, which always has a root directory. For example, one set of naming contexts could

be used by a research group and another set could be used by a manufacturing group.

Each of these groups could have what they consider to be a root naming context. The

naming contexts of these two groups could subsequently be federated into a company-

wide naming context, resulting in arbitrarily nested naming contexts with no global root
context.

The Visigenic Naming Service is available in Java or C++.

2.2.9 The ORB must provide an Event service:

Justification: An event service provides a flexible means to allow separate processes to

communicate. In the absence of a standard messaging delivery option--to complement

the standard synchronous RPC model--an event service enables the development of cli-

ent asynchrony. In addition, an event service provides the essential foundation for the

development of streaming interfaces, both for large multimedia content as well as

streaming audio or video, as well as the delivery of PUSH functionality.

Response: Visigenic offers a CORBA 2.0 compliant Event Service. (The Event Service

package provides a facility that de-couples the communication between objects. It pro-

vides a supplier-consumer communication model that allows multiple supplier objects to

send data asynchronously to multiple consumer objects through an event channel. The

supplier---consumer communication model allows an object to communicate an impor-

tant change in state, such as a disk running out of free space, to any other objects that

might be interested in such an event.)

The event channel is both a consumer of events and a supplier of events. The data com-

municated between suppliers and consumers are represented by the Any class, allowing

any CORBA type to be passed in a type safe manner. Supplier and consumer objects

communicate through the event channel using standard CORBA requests.

The event service provides both a pull and push communication model for suppliers and

consumers. In the push model, supplier objects control the flow of data by pushing it to

consumers. In the pull model, consumer objects control the flow of data by pulling data

from the supplier. The EventChannel insulates suppliers and consumers from having to

know which model is being used by other objects on the channel. This means that a pull

supplier can provide data to a pull consumer.

44



VisigenicEventServicesis availablein C++andJava.

2.2.10 TheORB mustfacilitateserverreplicationandfail-over:

Justification: Continuousavailabilityof data(with goodperformance)andtheability of
a systemto heal itself in recoveringfrom errorsaretwonecessaryfeaturesin anymis-
sion-criticalsystem.It is not feasibleto implementadequatefault resiliencewithout
somevendor-providedfacilities.

Response: Object implementation fault tolerance for objects is implemented by simply

starting instances of those objects on multiple hosts. The ORB, via the OSAgent, will

detect the loss of the connection between the client application and the object implemen-

tation and the ORB will automatically attempt to establish a connection with another in-

stance of the object implementation. The client can continue invoking methods on the

object without being concerned that a new instance of the object is being used.

2.2.11 The ORB must have a Security servlce or strategy:

Justification: Security is a key element of the ABCD infrastructure. Each TBU will

have differing security requirements; however, authentication and access control are re-

quired across the board, and integrity and privacy will be essential to a number of our

early projects. Therefore, the ORB vendor must provide some form of security option,

preferably conformant to or with a clear migration path towards conformance with the

CORBA 2.0 Security Service specification. Initially, access control and auditing will re-

quire Level 1 compliance with the security specification; ultimately, support at Level 2 of

the specification will become an essential requirement. In addition, the encryption im-

plementation should support both full strength encryption for domestic use, and weak-

ened encryption for export. Also, authentication and encryption methods should be

changeable via shared object or dll substitution rather than full product upgrade.

Response:

3.0; Secure

tion will be

Visigenic currently is ready to release phase one of security with VisiBroker

HOP (OMG compliant). A full implementation of the CORBA 2.0 specifica-

available later in 1998.

The Secure BOA (SBOA) uses the industry-standard Secure Socket Layer (SSL) protocol

to establish secure connections between clients and servers. The SSL protocol provides

clients and servers with

• privacy: Data passed between them is encrypted.

• integrity: Checksums in the data detect accidental or malicious corruption.

• authentication: A client is assured that a server is not an impostor; optiONAlly, a

server can require the same assurance of its clients.

45



In addition to implementing SSL privacy, integrity, and authentication, the SBOA has
these features:

Existing servers and clients can be made secure without altering their core code; at

most, their initialization code has to be changed to work with the SBOA. Clients that

don't require server authentication need no changes to work with servers that use the
SBOA.

• SBOA-based servers can identify client users for logging or for restricting execution

of sensitive operations to authorized users.

• Secure connections are orthogonal to threads and other VisiBroker facilities; choosing

security does not mean giving up something else.

• The SBOA's implementations of credential checking and encryption can be custom-

ized by developers.

In addition to the SSL and the SBOA, you can utilize VisiBroker's interceptors. You can

add to or alter the data passed between clients and servers; for example, you can add

transaction information or encrypt a credit card number.

2.3 GENERAL CRITERIA

This section describes general criteria for evaluation of an ORB and its vendor. Ques-

tions in each category that address one of the critical requirements are noted with the star

symbol (*). The following categories will be addressed:

• Standards Compliance

• Platforms and Bindings

• Scalability, Availability, and Fault Resilience

• Performance and Resource Utilization

• Integration and Interoperability

• OMG Services

• Development Issues

• Management

• Usability and Customizability

• Business Issues

46



• Pricing Issues

• Third-Party Products

• Case Studies.

2.3.1 Standards Compliance

The most significant standard that we are evaluating an object request broker against is its

conformance to the CORBA standard (now at level 2.0). Most commercial object request

brokers claim CORBA standard compliance, but the extent of the compliance may vary

from product to product.

In particular:

• Does the ORB support the full CORBA 2.0 Interface Definition Language (IDL)?

Response: Yes, both ORB products fully support the CORBA 2.0 IDL specification.

In fact, the Visigenic specification for Interface Definition Language (IDL) to Java

language mapping has been recommended for adoption by the Object Management

Group (OMG).

• Does the ORB support the full CORBA 2.0 Application Programming Interface

(API)?

Response: CORBA 2.0 has a number of components including Core, Language Map-

pings, Security, and Interoperability. These are separate compliance points. The main

APIs are in the Core ORB, therefore making VisiBroker fully compliant.

• Does the ORB support all the major components of the CORBA spec - BOA, IR, DII,

DSI, and object contexts?

Response: Yes, VisiBroker supports the Basic Object Adapter (BOA), the Interface

Repository (IR), the Dynamic Invocation Interface (DII) and the Dynamic Skeleton

Interface (DSI). VisiBroker 3.0 for C++ and Java supports all of these.

• Does the ORB support the Internet Inter-ORB Protocol (IIOP)?

Response: Yes, the Visigenic Orb's; VisiBroker for C++ and VisiBroker for Java

support IIOP as its native protocol. Visigenic was the first company to fully support

IIOP in its ORB products.

In addition, some non-standard features or services may be reviewed favorably if they are

likely to be incorporated into or otherwise affect the evolution of new CORBA standards.

The central criterion is the degree to which a currently proprietary or non-standard feature

facilitates, rather than hinders, the development of standard-based solutions.

47



2.3.2 Platforms and Bindings

A critical factor in ORB selection is whether the ORB resides on the platforms that one

intends to utilize. A related factor of similar importance is the issue of language bindings

for a given platform. Currently three language bindings have been accepted by the OMG:

C, C++, and Smalltalk. An RFP for a COBOL binding has been issued. Some vendors

have jumped ahead of the standard and have released COBOL, JAVA, and ADA bind-

ings, anticipating the demand for these bindings from customers.

Please provide a summary of currently supported and soon-to-be supported platforms and

bindings. Please include software version information for existing support, as well as

target availability dates for expected support.

VisiBroker for C++ 2.1

Platform Vendor Architecture OSNersion Compiler

Sun SPARC Solaris 2.4, 2.5, 2.5.1 SPARCworks C++ 4.0.1,4.1

SunOS 4.1,4.1.4

Microsoft Intel/Win32 Windows '95, NT 3.51, Visual C++ 4.1,4.2
4.0

Watcom C++ 11.0 (TBD)

HP PA-RISC HP-UX 10.01, 10.10, C-front A.10.22 and later
10.20

[ANSI] aC++ (TBD)

IBM RS6000 AIX 4.1, 4.2 C Set++ 3.1

SGI MIPS IRIX 6.2 MIPSpro C++ 7.1

Digital Alpha Digital UNIX 3.2f DEC C++ 5.1,5.5

VisiBroker for C++ 3.0

Platform Vendor Architecture OS/Version Compiler

Sun SPARC Solaris 2.5, 2.5.1 SPARCworks C++ 4.1,4.2

Microsoft Intel/Win32 Windows '95, NT 3.51, Visual C++ 4.1,4.2, 5.0
4.0

Watcom C++ 11.0 (TBD)

H P PA-RISC HP-UX 10.10, C-front A. 10.22

10.20 (GA + 6 weeks) [ANSI] aC++

IBM RS6000 AIX 4.1,4.2 (GA + 6 C Set++ 3.1 (or latest)
weeks)

SGI MIPS IRIX 6.2 (TBD) MIPSpro C++ 7.1 (or latest)

Digital (TBD) Alpha Digital UNIX 3.2 and 4.0 DEC C++ 5.5 (or latest)

48



*VisiBroker for Java 1.2--JDK 1.0.x compatible (not JDK 1.1)

Platform Vendor Architecture OS/Version

Sun SPARC Solaris 2.4, 2.5, 2.5.1

Microsoft Intel/Win32 Windows '95, NT 3.51,4.0

HP PA-RISC HP-UX 10.01, 10.10

IBM RS6000 AIX 4.1

SGI MIPS IRIX 6.2

Digital (TBD) Alpha Digital UNIX 3.2 (not planned)

*Requires OSAgent running on some server.

VisiBroker for Java 3.0

*Platform Vendor Architecture OS/Version

Sun SPARC Solaris 2.5, 2.5.1

Microsoft Intel/Win32 Windows '95, NT 3.51, 4.0

HP PA-RISC HP-UX 10.10, 10.20 (Q3)

IBM RS6000 AIX 4.1, 4.2 (Q3)

SGI MIPS IRIX 6.2 (Q3)

Digital (TBD) Alpha Digital UNIX 4.0 (not planned)

*Plus any other platform with a JVM 1.0 or higher, OSAgent not required.

Also, please indicate if there are any limitations applicable to support of a particular plat-

form or binding. In particular, please specify what OS versions and compiler versions are

supported by each version of the ORB, and state if there are any interoperability limita-

tions between different ORB versions on different platforms.

2.3.3 Scalability, Availability, and Fault Resilience

Scalability, availability, and fault resilience are essential for ABCD to deliver a global

applications infrastructure. Virtually limitless scalability is one of the core promises of

ORBs. Of course, continuous availability and automatic error recovery are essential to

any truly large-scale system. To determine if an ORB can deliver these capabilities, we

pose the following questions:

49



2.3.3.1 Scalability

• Threads are a light-weight means of supporting concurrency. Does the ORB support
threads and threadsafe runtime libraries?*

Response: VisiBroker provides two sets of libraries; a single-threaded library and an-

other library that is thread-safe and re-entrant. If you use the multi-threaded version of

the library, the VisiBroker core will automatically use threads for its internal proc-

essing, resulting in more efficient request management. For applications that never

intend to use threads, the single-threaded library offers a set of interfaces similar to

the multi-threaded library. This allows you to use the single-threaded library initially

and then re-compile with the multi-threaded in the future with virtually no interface

changes.

All code within a server that implements an ORB object must be thread-safe if it is to

use VisiBroker's multi-threaded library. You must take special care when accessing a

system-wide resource within an object implementation. For example, many database

access methods are not thread-safe. However, Visigenic has threadsafe ODBC driv-

ers for Oracle, Sybase, and Informix.

Services such as interface repositories and trading services need to utilize industrial--

strength substrates in order to scale. Can the interface repository or trading service

implementations be replaced with an industrial strength substrate, such as a database?

Response: The trader service can have different backend databases via ODBC

and more directly for specific data stores. The interface respository is currently

tied to simple file storage but the scalability comes from the fact that the IR

server can run on as many machines as necessary. IR is only needed for apps

that use the DII. The ORB itself does not need the IR to run. Visigenic is

considering having the IR use a DBMS for its repository in future releases.

Can current users of the ORB testify to its ability to scale-up to an enterprise-wide

solution? Is there anecdotal data indicating such scale?

Response: VisiBroker for Java and C++ are the leading ORB's today with the up-

coming shipment of approximately 20 million copies of Netscape's Navigator 4.0

which will bundle VisiBroker for Java runtime version and several million copies of

Netscape's SuiteSpot Servers which will bundle VisiBroker for Java and C++. In ad-

dition, other strategic commitments have been made to Visigenic VisiBroker technol-

ogy including Oracle's decision to bundle VisiBroker within it's NCA architecture,
and Borland's selection of VisiBroker for Java to bundle with JBuilder. Reference

contacts from Visigenic partners will be available to ABCD upon request.

• Lacking such data is there compelling evidence from performance monitoring, stress

testing, and capacity modeling that indicates the ORB will scale?

50



Response:

Connection Management: VisiBroker offers superior connection management.

Should a client request connections to multiple objects residing on the same server,

the requests are multiplexed over a single network connection. Developers can also

streamline system traffic by limiting the number of connections for each server object

using the connection pool feature that will be available in the VisiBroker 3.0 time-

frame. When the connection limit is reached, connections that have gone the longest

without use are broken before new connections are created. This allows large numbers

of clients to access the service provided by a given object.

SmartBinding: SmartBinding ensures that the optimum transport mechanism is cho-

sen whenever a client binds to a server object. If the object is local to the client proc-

ess, the client performs a virtual function call. If the object resides in a different

process on the same host, the client uses an optimized interprocess communication

mechanism. If the object resides on a different host, the client uses HOP over the
network.

Dynamic Object Creation: Dynamic object creation further enhances scalability and

performance. Objects are registered with VisiBroker's Object Activation Daemon,

which run on each machine that hosts server objects. If a client attempts to bind to an

object that is not currently running, the activation daemon can start an instance of the

object. Objects can also be started manually. Use of the Object Activation Daemon is

optiONAl. VisiBroker for Java will provide an tAD in version 3.0.

• Does the ORB provide factory mechanisms for natural decomposition of applica-
tions?

Response: VisiBroker provides some very sophisticated hooks for garbage collection.

The Visigenic ORB/BOA must manage the activation/deactivation of objects that are

under its control and provide the illusion to clients that all objects are active all the

time even though they are not. There are many strategies an ORB/BOA may choose

for providing this illusion. For example, an object can explicitly issue a

BOA::deactivate_obj call to let the ORB know its OK to deactivate the object.

You create client or server interceptor instances indirectly, by means of another class

called a factory. For client interceptors you derive a subclass from VISChainCli-

entlntercepFactory. Your implementation must override the base class's create()

method, returning an instance of your client interceptor, which is itself derived from

ISClientlnterceptor. The base class also defines static add() and remove() methods,

which add/remove a factory to/from a chain. As part of the client' s initialization, cre-

ate an instance of your factory in the usual way, then invoke VISChainClientlntercep-

Factory:: add(). Whenever the client binds to a new CORBA object, the ORB will

invoke your factory's create() method, which will return the interceptor for that ob-

ject. Server interceptor instances are created like client interceptor instances. You

provide a factory implementation by deriving from VISChainServerlntercepFactory,

51



overriding the create() method to return an instance of your derivation of VISServer-

Interceptor.

During server initialization, you create an instance of your factory in the usual way,

then invoke VISChainServreIntercepFactory::add0. Whenever a new connection is

made, the ORB will call your factory's create() method which will return the inter-

ceptor for that connection. You do not need to release or free interceptors; the ORB

cleans them up when their process/object/connection goes away.

2.3.3.2 Availability

• Does the ORB support replication of servers (to increase throughput by

load-balancing data access)?

Response: Multiple OSAgents running in the same LAN locate each other and parti-

tion the name space among themselves automatically. If multiple instances of server

objects are running, the OSAgent will perform load-balancing in a round-robin fash-

ion. Object migration is the process of terminating an object implementation on one

host and then starting it on another host. Object migration can be used to provide load

balancing by moving objects from overloaded hosts to hosts that have more resources

or processing power. Object migration can also be used to keep objects available
when a host has to be shut down for hardware or software maintenance.

• Are the load balancing algorithms fixed or configurable?

Response: The Location Service is a general-purpose facility for monitoring in-

stances. It can be used, for example, for load balancing. Suppose that replicas of an

object are deployed on several hosts. A bind interceptor can maintain a cache of the

host names that offer a replica, and each host's recent load average. The interceptor

can use the Location Service to update its cache by asking the Location Service for

the hosts currently offering instances of the object, and then query the hosts to get

their load averages. The interceptor can return an object reference for the replica on

the host with the tightest load.

Interceptors, which are extensions that the VisiBroker ORB invokes at particular

points in its processing. Interceptors, in other words, are functiONAlly similar to

"hooks" or "delegates" provided by some other systems. You implement an intercep-

tor by deriving a class from a VisiBroker ORB base class, and overriding the methods

that you want invoked. You can use interceptors for diverse functions, including log-

ging, access control, request forwarding, and load balancing.

2.3.3.3 Fault Resilience

• Does the ORB support fail-over (standby server) for fault recovery?*

52



Response: If you run more than one instance of the OSAgent on a local network and

one of those agents becomes unavailable, all object implementations registered with

that agent will be automatically re-registered with another agent. Likewise, client ap-

plications using an OSAgent that becomes unavailable will be automatically switched

to another agent by VisiBroker. No special coding techniques are required to take ad-

vantage of this OSAgent fault-tolerance, as long as the OSAgent is running on more

than one host on your local network.

You can provide object implementation fault tolerance for objects by simply starting

instances of those objects on multiple hosts. The ORB will detect the loss of the con-

nection between the client application and the object implementation and the ORB

will automatically attempt to establish a connection with another instance of the ob-

ject implementation. The client can continue invoking methods on the object without

being concerned that a new instance of the object is being used.

Are there facilities in the ORB that allow graceful modification of the interface as de-

fined between client and server (covered in the ORB Interface Type Version Man-

agement RFP)?

Response: The Interface Type Version Management RFP did not actually

result in a specification of anything. A certain company (Sun) made the point

that interface versioning can be handled perfectly well by the use of subtyping

and a module version numbering scheme. This argument carried the day

(Visigenic actually pulled together this response for Sun).VisiBroker can be

used in this way, therefore making it CORBA-compliant.

2.3.4 Performance and Resource Utilization

ABCD's primary objective is to deliver a transaction-oriented infrastructure. Multimedia

streaming applications will also be required; however, the primary performance context

will involve request/response transactiONAl usage. Therefore, it is crucial that transac-

tiONAl performance of the ORB is comparable to other middleware packages. Please

provide any data that will provide the necessary level of confidence that performance of

the ORB will meet or exceed these expectations. Please conf'trm that the ORB will use

the appropriate invocation mechanism (e.g., IPC for intra-host) rather than relying exclu-

sively on inter-host transports.

Response:

Client and Server on Different Hosts: When a client requests an object that re-

sides on a remote host, a TCP/IP connection will be established between the client

and object server. The ORB will instantiate a stub (stubs are also called proxy

objects) for your client to use. A method invoked on the proxy object will be

written to a buffer, or marshaled, as a request and sent to the server on the remote

host. The server on the remote host will unmarshal the request, invoke the desired

method, and send the results back to the client.

53



Client and Server in a Single ProcessmJava: The previous discussions have as-

sumed that object implementations have taken the form of a server process. While

this is often the case, a client application and the object implementation can both

be packaged inside a single process. When your client application invokes a bind

in this scenario, the ORB will return a pointer to the object implementation itself.

That pointer will be widened to the object type used by your client application. All

methods invoked on your client's object will get called directly as Java methods

on the object implementation. The ORB will be involved only during the bind

process.

Client and Server on the Same Host C++: If the ORB determines that the re-

quested object implementation resides on the local Windows host, a connection

will be established between the client and server object using shared memory --

only if both the client and server are multi-threaded. The ORB will instantiate a

proxy object for your client to use. All methods invoked on the proxy object will

be packaged as requests and sent to the server using shared memory.

If the ORB determines that the requested object implementation resides on the lo-

cal UNIX host, a connection will be established between the client and server ob-

ject using shared memory -- only if both the client and server are multi-threaded.

The ORB will instantiate a proxy object for your client to use. All methods in-

voked on the proxy object will be packaged as requests and sent to the server us-

ing shared memory.

Client and Server in a Single Process: The previous discussions have assumed

that object implementations have taken the form of a server process. While this is

often the case, a client application and an object implementation can be packaged

within a single process. When your client application invokes a bind in this sce-

nario, the ORB will return a pointer to the object implementation itself. That

pointer will be widened to the object type used by your client application. All

methods invoked on your client's object will be invoked as C++ virtual functions

on the object implementation. The ORB will be involved only during the bind

process.

Marshalling: The IIOP protocol used CDR encoding. This encoding states that

the sender always sends data in senders "data format". The receiver is responsible

for "conversion" if the "byte ordering" of the receiver is different. The header in-

formation in IIOP packets contain the "byte order" of the sender and the receiver

has to "make it right". So two identical machines do not pay a penalty of "byte

swapping".

In addition, resource requirements will affect both the cost and scalability of the system.

Therefore, please indicate any known system resource usage requirements for your ORB,

as well as information pertaining to efficiencies built into the ORB. For example, what is

the level of socket usage, does the orb multiplex over sockets where feasible, do inactive

connections get timed-out or reused?

54



Response:VisiBroker 3.0simplifiesclient connectionsin thatall client threadsin a
processshareasingleconnectionto a serverprocess.Thus,separatethreadsmultiplex
overoneconnection,evenif theyperformbinds. This is not thecase,of course,if the
clientexplicitly callsclone(). Connectionsin theserverprocesscanbeadjusteddynami-
cally, allowingamaximumnumberof connectionsandconnectionrecyclingof the least
recentlyusedconnections.

Multiplexing in the3.0modelhasbeenenhancedover2.0,andasaresult,callingclone
( ) andexplicitly creatinganewconnectionis rarelynecessary.In 3.0,multiple requests
canbeinitiatedwithoutintermediateresponses.Sooverthe sameconnection,theclient
caninitiateseveralrequeststo aserverprocess(presumablyto multipleserverobjects),
andaseachresponseisreceivedbytheclient, theresultsarehandedoff to theappropriate
client thread.Thiscanresultin significantperformanceenhancement,andrequiresfewer
connectionsto theserversinceregardlessof thetimeit takesto servicearequest,asingle
connectionwill returntheresultsasfastasseparateconnectionswouldhavedone.

2.3.5 IntegrationandInteroperability

Integrationwith mainframesin orderto accesslegacydataandintegrationwith the
desktopareof paramountconcernin ORB middleware.Therearemanylegacysystems
thatmayneedto beintegratedwith anORB,includingVSAM andIMS systems.The
desktopenvironment,however,is morespecific.Thepredominantdesktopcomputing
environment--Windows3.1,WindowsNT, andWindows'95--is aparamountconcern
for anyintegrationfacility. Thus,anORBmustbeableto addresstheneedsof anexisting
installedbaseof clientsthat utilizeWindowsmachineswhile providingaccessto enter-
priseservers.Questionsto beaddressedin evaluatingtheability of anORB to integrate
with existingsystemsare:

2.3.5.1Accessto theMainframe

DoestheORBsupportaccessto themainframe?

Response:Visigenicis workingwith apartnerto provideanMVS portof VisiBroker.Beta
availability of VisiBroker for MVS is scheduled for 3Q97. Visigenic has an agreement with

IBM that provides Visigenic with access to client-side CICS and MQSeries libraries. Visi-

genic is planning to release a comprehensive Legacy Integration Service by year-end.

2.3.5.20LE/COM or DCOM Integration

• Can the ORB be used by OLE clients?

Response: The Visigenic COMkCORBA Bridge (VisiBridge) enables a COM client

application to use a CORBA server. The COM client application may be one of these

types:

55



• An OLE Automation controller like Visual Basic, Excel, or PowerBuilder

• A custom application written either in C++ or Java, using direct calls on COM

interfaces.

Visigenic's COM_CORBA Bridge includes a Bridge Wizard that creates bridge ob-

jects automatically without any programming. The bridge objects that are created us-

ing the Bridge Wizard may be one of two types:

• An ActiveX control.

• A standalone DCOM server.

• Does the ORB use OLE servers?

Response: Currently, VisiBroker does not have a mechanism for the ORB to access

OLE servers. However, later in 1997, Visigenic's VisBridge will be bi-directlONA1.

• Can the ORB manage both OLE and CORBA repositories?

Response: Browsing capabilities will be available to the OLE registry and will be

tightly integrated with the next release of VisiBridge that will be bi-directIONA1.

• Do you have any plans regarding COM/CORBA and DCOM/CORBA gateways com-

pliant with the OMG Interoperability specification?

Response: The OMG spec maps from CORBA servers to COM clients and from

COM servers to CORBA clients. The spec for both OLE Automation and direct

COM interface; VisiBridge supports OLE Automation mapping from CORBA servers

to COM clients and complies with OMG. The spec supports the widest number of

client applications, including those written in VisualBasic, Java, and C++.

2.3.5.3 ORB Interoperability

Does the ORB have demonstrated interoperability with any other commercial ORB?

Response: Applications developed with VisiBroker are interoperable with other CORBA

2.0 compliant objects and with ActiveX/DCOM objects. VisiBroker provides a complete

CORBA 2.0 Object Request Broker that uses IIOP as its native communications protocol.

Unlike other ORBs, VisiBroker has no proprietary internal protocol and does not require

a gateway or a translator protocol. Objects developed with VisiBroker are interoperable

with other objects running on a CORBA-2.0 compliant ORB. It should be noted, how-

ever, that objects managed or accessed by an ORB other than VisiBroker would not be

participants in VisiBroker's unique functionality, such as the high availability made pos-

sible by the Smart Agent architecture.

56



VisiBroker enables objects written in C++ or Java to be accessed by other objects written

in other languages, including C++, Java, and Smalltalk.

Visigenic participated in the ObjectWorld East in 1996 and successfully interoperated

with several other CORBA 2.0-compliant vendors. Today, you can find VisiBroker in-

teroperating on the Internet at CORBAnet's web site with several other vendors. Since

VisiBroker for Java was the first CORBA 2.0- compliant ORB it became the de facto

standard for interoperability testing. Visigenic made this process easier by making avail-

able the Visigenic-developed test suites to other vendors for their use. Again, VisiBro-

ker's mature implementation of IIOP was an important decision factor for both Netscape

and Oracle in selecting VisiBroker to embed into their technologies.

2.3.6 OMG Services

Services provide essential capabilities that extend the basic operation of an ORB. The

following set of services have been defined by the Object Management Group (OMG/TC)

and have varying availability in commercial ORBs:

• Trading Service*

Response: Visigenic plans to productize and GA the DTSC trader by the end

of this calendar year (1997).

• Event Service*

Response: Now, GA since December 1996 (C++ and Java).

• Lifecycle Service*

Response: The OMG Lifecycle spec defines a standardized set of operations such as

move, and copy that an object may support and some conventions regarding factories

that an application can conform to. There is not, per se, anything that can be imple-

mented as a service library that is linked into a server since the implementation of the

Lifecycle interfaces is usually application-specific or at least involves a complex in-
teraction of a number of services that is not easily encapsulated. VisiBroker does sup-

port the Lifecycle Service in the sense of providing client stubs for the interfaces and
in the sense that our software follows the conventions.

• Security Service*

Response: Visigenic is implementing security in two phases. The ftrst phase is the se-
cure ORB. VisiBroker for C++ 3.0 and VisiBroker for Java 3.0 have built-in support for

SSL. The second phase is a complete implementation of the OMG security service.

Visigenic is partnering with an organization that has exceptiONAl security expertise.

Release 1.0 of the security service is slated for 4Q97.

57



• TransactionService*

Response:TPBroker,Visigenic's,andHitachi'sjointly developedimplementationof
OTSis currentlyin thepilot stage.Transactionsemanticsandguaranteesarecompliant
to theOMGOTSspecification.Visigenicis alsoprovidingXA support.Connectivityto
TPmonitorswill beachievedeitherthroughUOPinteroperabilityor throughcustom
modulesin theLegacyIntegrationService.Visigenicplansto provideEncinasupport
throughIIOP interoperability.In additionto TPBroker,Visigenicis creatingits own
versionof OTS;it will bea"lightweight"versionin full compliancewith thespec.This
will beavailablelaterin 1997.

• RelationshipService

Response: Future.

• Licensing Service

Response: Future.

• Externalization Service

Response: Future.

• Naming Service*

Response: Now, GA since December 1996 (C++ and Java).

• Persistence Service

Response: No plan (OMG is in the process of obsoleting the current persistent object

spec, we plan to track new OMG specifications as they emerge. Visigenic provides

alternative persistence mechanisms today based on ODBC. VisiBroker features a

DBAdapter that integrates persistent objects stored in OODBs such as ODI's Ob-

jectStore.)

Our engineering team is looking for customers/partners who would help us in

"development partner/alpha customer" capacity, or at least review functiONAl speci-

fications for object persistence functionality. They are looking for concrete customers

that can dig down deeper to answer the detailed functiONAl questions that the engi-

neering team will have.

• Concurrency Control Service

Response: Planned FY98.

58



• Properties Service

Response: Future.

• Object Query Service

Response: Future.

• Time Service

Response: Planned.

Please indicate which standard services are currently available or in progress. Please

supply software version information (by platform if necessary) for available services, and

anticipated delivery dates for expected services.

If proprietary services, comparable to some of the standardized or not-yet standardized

services are provided, please indicate what your migration plans are towards standards

compliance.

In addition, a number of services are in the process of standardization for CORBA 3.0.

These include important services such as the asynchronous messaging service, as well as

the portable object adapter. What plans do you have to support migration towards those

and other upcoming standards?

2.3.7 Development Issues

ABCD 1.1 was designed and implemented using state-of-the art object-oriented tools and

processes. Rational Rose is at the center of this process, supporting both iterative devel-

opment and the Booch methodology. Rational Rose also generates C++, which is our

core development language. ABCD's staff has acquired substantial OO expertise that it

expects to leverage with a CORBA-based solution.

Questions in this section address various aspects of development facilitation.

2.3.7.1 Integration with a Development Environment

An integrated development environment such as Microsoft's Visual C++ or CenterLine's

ObjectCenter can greatly assist the developer in building and debugging code.

• How difficult will it be to integrate the ORB into our existing development environ-

ment or other client-oriented development environments?

Response: This really depends on the architecture of the "tools" in use at ABCD.

This can be a relatively easy process.

59



IsdistributedobjectdevelopmentusingtheORB easilyintegratedwith anopen,inte-
grateddevelopmentenvironment?

Response:VisiBroker for C++ includesan IDL-to-C++stubandskeletoncodegenera-
tor.

VisiBrokerfor JavaincludesanIDL-to-Javastubandskeletoncodegenerator.

VisiBroker for Java3.0 will includethe Caffeinetechnologyjointly developedwith
Netscape.CaffeineenablesJavaprogrammersto write CORBAobjectswithout having
to useIDL.

Third-partyvendorsareprovidingdevelopmenttoolsthatrunon VisiBroker.For exam-
ple,BorlandhaslicensedVisiBrokerfor inclusionwithJBuilder.

Visigenichasplansfor thedevelopmentof distributedvisualdevelopmenttools.

• With aCASEtool suchasRationalRose?

Response:RationalRosesimplygeneratesCORBA2.0-compliantIDL. This IDL
canberun throughVisiBroker'sIDL compilers.Therefore,nothingspecialhasto be
doneto usebothRationalRoseandVisiBroker together.

With anOOA/OODmethodologysuchasBooch?

Response:Boochisjust amethodologyandnot aproduct;thereisno reasonwhy
ABCD cannotusethismethodologywith ourproduct. (RationalRoseusestheBooch
methodology.

Whathurdlesdoyou anticipatefor ourstaffastheymigrateto anORB-basedsolu-
tion?

Response:With adequatetrainingandmentoringwith theexperiencedstaffat
ABCD, thetransitiontoVisiBroker shouldbeminimal.

2.3.7.2Non-IDL-BasedDevelopment

InterfaceDefinition Language(IDL) is notwell-supportedby developmentenvironments
or currentanalysisor designtools. Suchsupportenhancestheusabilityof anORB.

60



• Is the ORB integrated with an analysis/design tool?

Response: Borland will integrate Visigenic's VisiBroker for Java object request bro-

ker (ORB) into JBuilder, Borland's next-generation development tool for building

enterprise-wide multi-tiered client/server applications. Under the terms of the agree-

ment, Borland will integrate VisiBroker for Java into JBuilder's client/server and en-

terprise versions of its software development tools. VisiBroker for Java will enable

JBuilder developers to use the Internet Inter-ORB Protocol (IIOP) and link distributed

application objects on local servers or across the Internet.

Do any language development environments generate IDL compatible with this ORB?

Response: VisiBroker will provide a set of utilities named "Caffeine". Caffeine's

goal is to provide a pure Java solution for developers of IIOP-based distributed sys-

tems. One of the key requirements is that the Caffeine solution be able to provide

transparent interoperability with ORB objects implemented in other languages such as

C++. This functionality is available in VisiBroker 3.0.

The components of Caffeine are

• a code generator that takes Java interface files as input and produces IIOP compli-

ant stubs and skeletons,

• a VisiBroker for Java compiler that automatically produces CORBA IDL from

Java code,

• a default URL based name service, and

• pass-by-value (C++ will also provide this functionality in VisiBroker 3.0).

2.3.7.3 Threads

Multithreading capability is listed both in this development section as well as in the Scal-

ability section above. The reason for including this topic in both sections is that an ar-

chitecture that requires significant concurrency, but that must be designed without being

able to depend on a multithreading capability, is very different from one that assumes

thread availability. Therefore, threading availability is both a development and scaling

issue.

61



• Does the ORB support multithreading?

Response: VisiBroker provides two sets of libraries a single-threaded library and an-

other library that is thread-safe and re-entrant. If you use the multi-threaded version of

the library, the VisiBroker core will automatically use threads for its internal proc-

essing, resulting in more efficient request management. For applications that never

intend to use threads, the single-threaded library offers a set of interfaces similar to

the multi-threaded library. This allows you to use the single-threaded library initially

and then re-compile with the multi-threaded in the future with virtually no interface

changes.

Which threading models does the ORB support: thread-per-request, thread-per-

session, thread-pool?

Response: Object servers can choose between three thread policies; single threaded,

thread-per-session, or thread-pooling. The single-threaded policy is automatically se-

lected if you link your object server with the single-threaded library. The thread-per-

session and thread pooling models differ in when threads are created and when they

are released. You specify one of these thread policies by passing a BOA option to the

server when it is started, or by hard-coding the desired thread policy in the BOA_init

method invocation.

Server Thread-per-Session Policy

When your server selects the thread-per-session policy, a new worker thread will be

allocated each time a client binds to one of the server's object implementations. A

worker thread will be assigned to handle all the requests received from a particular

client. When the client disconnects from the server, the worker thread is destroyed.

This policy is more efficient that the single-threaded policy because it allows for more

parallelism within the server.

Server Thread Pooling Policy

When your server uses the thread-pooling policy, it defines the maximum number of

threads that can be allocated to handle client requests. A worker thread is assigned for

each client request, but only for the duration of that particular request. When a request

is completed, the worker thread that was assigned to that request is placed into a pool

of available threads so that it may be reassigned to process future client requests. The
overhead associated with the creation and destruction of worker threads is reduced

because threads are reused rather than destroyed.

62



Client Application Threads

Client applications can use threads in several ways in relation to an object implemen-

tation. The client's main thread can obtain an object reference by invoking the bind

method and pass the reference to each of the worker threads it creates. Each client

worker thread can use the _clone method on an object reference passed by the main

thread. Each client thread can issue its own bind request.

• If so, is the thread package platform independent, e.g., POSIX-compliant?

Response: VisiBroker utilizes various thread packages based on the platform, for

example: on Solaris, we use the UI thread API; on NT, we use its native threads; and

on HPUX, DEC Alpha, AIX, and IRIX, we use the pthread libraries provided by the

OS.

2.3.8 Management

Management of an ORB in a distributed high-volume, production environment that may

include tens, hundreds, or thousands of machines, is a critical concern. Some of the is-

sues to be addressed with respect to management include:

Does the ORB support server management? (For example, can the ORB daemons be

monitored and administrated from a single workstation or more advantageously, does

the ORB use an operating system-independent method of administration?)

Response: VisiManager, which will be released with VisiBroker 3.0, will have a tool

that looks at what the Smart Agent knows about, and this is an object-centric view.

Determining what servers are running would be indirect. AdditiONAlly, we will pro-

vide a list of all Activation Daemons running, and all Naming Factories (servers) that

are running.

• Does the ORB support mechanisms for self-management?

Response: The ORB, via the OSAgent process, maintains internal tables of object

location. This lets the ORB transparently manage its object servers, with no inter-

vention from the users.

• Can the ORB be integrated with a transaction monitor or will the product provide a

CORBA 2.0-compliant transaction service that is integrated as part of the ORB?

63



Response: TPBroker, Visigenic's, and Hitachi's jointly developed implementation of

OTS is currently in pilot stage. Transaction semantics and guarantees are compliant to

the OMG OTS specification. Visigenic is also providing XA support. Connectivity to

TP monitors will be achieved either through HOP interoperability or through custom

modules in the Legacy Integration Service. Visigenic plans to provide Encina support

through HOP interoperability. In addition to TPBroker, Visigenic is creating its own

version of OTS; it will be a "lightweight" version in full compliance with the spec. This

will be available later in 1997 and will be integrated with the ORB.

Does the ORB provide or support a system management strategy (e.g., the Simple
Network Protocol SNMP)?

Response: SNMP support will be provided at a later date.

Does the ORB provide or readily integrate with an alarm system for human escalation

of exceptions?

Response: Many customers built "alarm systems" for exceptions; now, especially
with message interceptors, this has become even easier.

Does the ORB provide or facilitate run-time instrumentation and reporting of per-

formance metrics to facilitate tuning?

Response: The VisiBroker ORB and the bind( ) method generated by the IDL com-

piler for each IDL interface can be selectively extended by developer-supplied C++

objects called interceptors. Writing an interceptor gives you the opportunity to sup-

plement the operation of these components with your own code. You can, for exam-

ple,

impose access controls on objects and methods, granting or denying access based

on the requesting user' s identity. Write log data for analysis of performance or us-

age patterns.

• add to or alter the data passed between clients and servers, for example, add trans-

action information or encrypt a credit card number.

• trace the routing of invocations from clients to (potentially forwarding) servers.

• dynamically select the server that receives a client invocation, possibly choosing it
based on load information.

• provide an alternative location service that's invoked when the VisiBroker bind()
method fails to find a server.

• interceptors can be used with both the BOA and the Secure BOA.

64



2.3.9 UsabilityandCustomizability

Usabilityandcustomizabilityareelementsthatcanenhanceor detractsignificantlyfrom
anORB'sutility.

2.3.9.1Easeof Installation

• Does the product utilize a script that installs the ORB? Is the script reliable or does it

fail? Can the script be used to remove the ORB?

Response: Currently there is not script for installation; detailed instructions describe

the simple process.

• Does the script assume some reasonable default locations for the ORB to be installed,

consistent with the conventions of the platform?

Response: Yes, default directories and paths are suggested but not enforced.

• Does the script update PATH variables and environment variables automatically?

Response: Typically, system administrators will update applicable registries and

class paths as necessary.

• Does the product install without damaging the current environment, e.g., overwriting

other ORB's or related products?

Response: No damaging effects should occur by installing VisiBroker. It can co-

exist with other ORB and/or related products.

• Is the amount of time for installation consistent with similarly complex and similarly

sized products on this platform?

Response: Yes, the installation is a short process.

2.3.9.2 Ease of Configuration

• Is a script available for specifying connection time-outs, connection retries, diagnostic

messages, etc.?

Response: This is something more of a application-side issue. However, with OTS,

many of these features will be inherent to the OTS service.

Is configuration information available for inspection through a single mechanism,

e.g., a command that prints all configuration settings for the ORB or a browser that

supports viewing and editing?

65



Response: The osfind utility command reports on all VisiBroker-related objects and

services running on a given network. By using osfind you can find out the number of

osagent processes running on the network as well as the exact machine they are run-

ning on. The osfind command also reports on all VisiBroker objects that are active on

the network. Use osfind to monitor the status of the network and locate stray objects

during the debugging phase. VisiManager, which will be released with VisiBroker

3.0, will have a tool that looks at what the Smart Agent knows about, and this is an

object-centric view. Determining what servers are running would be indirect. Addi-

tionally, we will provide a list of all Activation Daemons running, and all Naming

Factories (servers) that are running.

Are diagnostic messages regarding errors in configuration clear and definitive?

Response: Yes, diagnostic messages are clear. In fact VisiBroker for Java 3.0 has a

built-in debugging tool. Not all C++ compilers support exceptions through the try and

catch statements, so the CORBA specification def'mes an Environment class for re-

flecting exceptions. VisiBroker uses the Environment class, along with a set of mac-

ros, to provide your applications with exception handling capabilities when try and

catch are not supported.

2.3.9.3 Openness and Extensibility

• Can existing class libraries be incorporated into the ORB with minimal coding?

Response: The question is under-specified. It depends on what sort of classes are in

mind and what they do. VisiBroker 3.0 features a variety of extensibility capabilities

running from interceptors to plug-in object adapters.

Are constructs available in the product to allow extensions to be basic functionality?

For example, constructs such as smart proxies, attribute caching, or metaclasses can

be used to extend the ORB's basic functionality.

Response: VisiBroker 3.0 will have smart proxies that allow caching of state local

to the client, transparently to the client API. Also, we will provide interceptors API in

order to manipulate the low-level IIOP buffers for infrastructure developers. Con-

ceming metadata, this is already achieved with our support of the CORBA-compliant

Interface Repository, which will also include some visual management tools.

• Are vendor-delivered CORBA Services available as shared libraries (.so, .dll) as well

as executables so that they may be incorporated into user executables?

Response: Yes. There are client stub libraries as well as server libraries (for the

Naming and Events Services).

• How readily can the ORB event loop be integrated with standard client event loops?

66



Response:WhenyourobjectimplementationinvokestheBOA::impl_is_readymethod,
aneventloopis enteredthatwaitsfor thearrivalof requestsfrom client applications.
Yourobjectimplementationmayalsoneedto interactwith anotherevent-drivensystem.
In amulti-threadedenvironment,youcansolvethisproblemby simply usingtwo threads,
onethreadthatwaitsfor VisiBrokereventsandanotherthreadthatservicesotherevents.

2.3.9.4Portabilityof Customer-DevelopedCode

A particularORBmayrequirethatclientor servercodeobserveconventionsthat arenot
easilyportablebetweenplatforms,e.g.,theexception-handlingapproachfor Orbix Win-
dowscodeis ratherdifferentthanfor OrbixUNIX code. Portabilityof codebetween
ORB vendorsalsois problematic,serverimplementationcodeis verydifferentbetween
Orbix andORB Plus;exceptionhandlingin ORBPlusC++clientsandserversdoesnot
follow C++ conventionsandis veryORBspecific. Thesequestionsattemptto charac-
terizehow portableanimplementationis,betweenplatformsandbetweenvendors.

• Does the ORB support a consistent and portable exception-handling policy that is not

dependent on the native compiling capability?

Response: Yes.

• Is the client-side code easily portable to different platforms, using the same ORB?

Response: Yes.

• Is the client-side code easily portable to a different ORB?

Response: Yes, as long as no extensions are used, the ORBs would be portable.

Can the server-side application code be re-targeted to a different vendor's ORB, given
reasonable effort ?

Response: Yes, as long as no extensions are used, the ORBs would be portable.

2.3.9.5 Documentation, Training, and Consulting Support

Solid documentation, training, and consulting support are absolutely essential for a large

undertaking such as ABCD's.

Is the documentation correct; e.g., are API's accurately defined or, if there are errors

or obvious omissions in the documentation, what support is provided to readily sup-

plement the published documentation?

Response: Much of the API interfaces are documented. Please refer to the VisiBro-

ker 3.0 documentation for an illustration of this. In fact, many of the API's are via
IDL.

67



Are the examples illustrative of fundamental concepts? Do they provide a graduated

approach to understanding the ORB's features?

Response: Yes, there are many examples of the ORB's functionality as well as code

examples.

Are there platform-specific examples, e.g., examples that illustrate ORB features that

may need to be tailored to idiosyncratic elements of a platform?

Response: There are no idiosyncratic elements pertaining to programming for differ-

ent platforms.

Is there adequate training on the ORB available?

Response: Within the Visigenic Professional Services Organization, PSO is a fully

trained and staffed teaching organization with over 20 staff years of experience.

Training in VisiBroker for C++ and VisiBroker for Java are available and specialty

courses can be arranged. These classes can be arranged at your location or at the

Visigenic Training Center.

Is expert consulting on the ORB available?

Response: Within Visigenic ProfessiONAl Services Organization (PSO) we have

staffed consultants that are certified to work with all Visigenic Software products. These

consultants can perform both architectural and design work as well as staffing for proj-

ects. This can be done either on an on-site basis or through Visigenic's facilities.

To assist you with your distributed application development issues, Visigenic has a staff

of seasoned consultants available to help your project team at a critical point in the

product development cycle. They deliver the technical expertise and objectivity needed

to shorten the path to a successful 1T solution.

Visigenic consulting services are focused on distributed-object and data access middle-

ware implementations. Our accomplished consultants have worked within these fields

since the advent of the technologies themselves, achieving and maintaining the expertise

necessary to guide clients to successful implementations of CORBA-compliant and

ODBC/JDBC-based IT systems.

Visigenic is the leading provider of embedded distributed object and data access tech-

nologies to the software industry. Such industry leaders as Netscape, Oracle, Novell,

Borland, and Sybase have integrated our software into their products. As a result, our

consultants can help you optimally leverage the functionality of the CORBA, ODBC,

and JDBC technologies found in our partners' products.

68



Our consulting organization provides a wide variety of specialized services in the ar-

eas of enterprise application and database access consulting. Our consulting services

focus on

Distributed Object and CORBA Application Architecture Development. A

seasoned architect will lead or assist your project team in developing a distributed

object architecture compatible with CORBA and DCOM concepts.

Strategy Assessment. We merge our in-depth knowledge of distributed object

technologies and Visigenic products with your business and engineering goals to

create a winning strategy.

Reference Application Design and Development. Our consultants can lead a de-

velopment project to create or extend an application that provides a real-world ex-

ample for other teams to reference.

Project Mentoring and Technology Transfer Consulting. Our VisiBroker prod-

uct specialists can assist your project team members during implementation and de-

ployment activities.

2.3.10 Business Issues

As noted earlier, factors relating to the overall health and strength of the company that

sells an ORB may be of equal or greater importance in ORB evaluation than any technical

concerns. Some of the issues relating to company evaluation are noted here.

2.3.10.1 Quality of Support*

• What are the levels of support offered: 24-hour availability hotline, daytime tele-

phone support, e-mail only with some e-hour guaranteed response, bulletin board

support, other?

Response: Visigenic offers our customers a Premium Support Plan. It includes gen-

eral terms and conditions, definition of case priorities, response times, closure of techni-

cal support cases, correction goals, escalation procedures, and maintenance releases.

Please see appendix, Premium Level Technical Support Services Agreement.

• How responsive is the support organization?

Response: 4-hour call-back time is guaranteed.

• How accurate or efficacious are support responses to customer questions?

69



Response: Visigenic supports a very complex product and hire extremely senior staff

(often developers) to support it. We try to make our responses both accurate and effi-

cacious. It does not always happen in a single call, because often one piece of infor-

mation leads to the need for another. We do, however, try to get to the bottom of

issues as soon as possible.

• Is there on-site consulting support available to aid the customer with product prob-
lems?

Response: As mentioned above, Visigenic maintains a very senior staff that does

provide various forms of on-site consulting support.

2.3.10.2 Viability of the Company

• Is the company well-capitalized?

Response: Please refer to the enclosed Visigenic Prospectus.

• Does it have seasoned management staff?.

Response: Organization Chart and Senior Management Profiles.

70



Chief

Executive

Officer and

Chairman

President

and Chief

Operating
Officer

Chief

Financial
Officer

Roger Sippl

Roger Sippl is the Chief Executive Officer and Chairman of Visigenic Software, where

he is the technology visionary responsible for long-term product development, strategic

planning, and industry standards. Sippl has more than sixteen years of senior operations

and chief executive experience working with technology companies.

Sippl is the founder of Informix Software, Inc. Under his direction, Informix pioneered

SQL relational databases, 4GL application development tools, and OLTP database tech-
nology for the UNIX operating environment. Sippl served as the first chairman of the

SQL Access Group, and served on the X/Open Board of Directors and the Independent
Software Vendor Council (ISV). He also served on the UNIX InternatiONAl Executive

Committee and is a founding board member of Uniforum, the first UNIX trade organiza-
tion and show. In addition to his work at Visigenic, Sippl is co-founder and board mem-

ber of The Vantive Corporation of Mountain View, California, a customer service
automation software vendor.

Sippl holds a

at Berkeley.
Mark Hanson

B.S. degree in Computer Science from the University of California

Mark Hanson is the President and Chief Operating Officer of Visigenic Software, where he

is responsible for all product development, strategic planning, sales, marketing, and opera-

tions. Prior to becoming President, Hanson was Executive Vice President of Sales and

Marketing, with responsibility for worldwide sales, marketing, and support operations.

Before joining Visigenic, Hanson held the positions of Vice President of Channel Sales at

Sybase, and Vice President of InternatiONAl Sales at Gain Technology, prior to the Sybase

acquisition. Hanson helped Sybase launch its high-end channels strategy, effectively

building a channels organization from five employees to forty-three employees in eighteen
months. In addition, the channels organization recruited over 200 new VARs and fifty sys-

tems integrators during this period.

Previous to Sybase, Hanson was at Macromedia, a leading supplier of PC multimedia soft-

ware and services, where he held the position of Worldwide Vice President of Sales and

Services. Before joining Macromedia, Hanson served as the Vice President of American

Sales for Informix Software. During his seven years with Informix, Hanson played a key

role in building the domestic sales organization from four people to over two hundred peo-
ple. In addition, he helped build Informix's successful multi-channel distribution strategy,

which included OEM, distributor, VAR, and direct sales organizations.

Hanson received a B.S. degree in Marketing from Santa Clara University, and his Masters

in Finance from Golden Gate University in San Francisco.
Casey Eichler

Casey Eichler is the Chief Financial Officer for Visigenic, where he is responsible for fi-
nance, operations, information systems, human resources, and investor and shareholder
relations.

71



Vice

President,
Worldwide

Sales

Vice

President,

Marketing

Chief

Technology
Officer

Eichler has fourteen years of experience with software and publicly traded companies. Pre-

viously, he served as Executive Vice President and Chief Financial Officer for National

Insurance Group, a publicly traded financial services and technology solution provider that

employed over 500 employees and reported revenue of $36 million in 1995. Prior to that,

he held the position of Executive Vice President and Chief Financial Officer at Mortgage

Quality Management, where he helped to grow annual revenue from $500,000 to $23.5

million. Eichler also brought to Visigenic software experience through positions held with

technology leaders Microsoft Corporation and NeXT Software, Inc.

Eichler earned his B.S. in Accounting from St. John's University. He is a Certified Public
Accountant.

Scott Chalmers

Scott Chalmers is the Vice President of Worldwide Sales for Visigenic Software, where he

is responsible for all sales activity, including direct sales, partner sales, OEM sales, and
distributor sales.

Chalmers has twenty-five years of experience in senior sales roles working at technology

companies. Prior to joining Visigenic, Chalmers spent six years at Informix Software,

where he held positions as District Manager, Western Regional Manager, and Western Re-

gional Vice President before assuming the duties of Vice President of U.S. Sales. He has
also served as Area Director at AT&T Information Systems, worked as an independent

consultant, and held various senior sales positions in a thirteen-year engagement with IBM.

Chalmers holds an M.B.A. degree from the University of California at Los Angeles. He

received a B.A. degree from Oklahoma University.
Bob Macdonald

Bob Macdonald is Vice President of Marketing for Visigenic, where he is responsible for

the strategy, planning, and execution of marketing programs for data access and distributed

object products.

Macdonald brings to Visigenic thirteen years of strong marketing and sales experience in

the enterprise and Internet software markets. Previously, he was Vice President of Corpo-
rate Marketing at Informix Software, where he played a central role in the planning of all

product launches and acted as the primary spokesman for the company. Macdonald held

other positions at Informix, including Executive Director of Sla'ategic Planning and Na-

tional Sales Manager.

Macdonald has diverse experience outside of high technology as well, including special

effects production for a number of major Hollywood motion pictures, as well as working as
the host of a nationally syndicated current affairs radio program in the U.S.

Macdonald earned his B.A. in Business Administration from Principia College in Saint

Louis, Missouri.

,lens Christensen

Jens Christensen, Ph.D., is the Chief Technology Officer for Visigenic, where he is respon-

sible for defining product strategies and technology directions.

72



Vice

President,

Engineering

Vice

President,

Corporate

Development

Vice

President,
ProfesslONA

! Services

Christensen was co-founder and CEO of PostModern Computing, which merged with

Visigenic in 1996. Before his tenure with PostModem, Christensen held engineering, con-

suiting, and management positions with Columbia University, FMC Corporation, and Tek-

nekron Corporation.

Christensen holds a Ph.D. in Computer Science from Stanford University.

Richard Keiman

Richard Kelman is the Vice President of Engineering for Visigenic, where he manages de-

velopment, product management and quality assurance of the company's distributed object
and data access technologies.

Prior to joining Visigenic, Kelman was Vice President of Client Services Development for

Tesseract Corporation, a leading provider of human resources management systems. He

has also served as Director of Systems Development for Dow Jones and Vice President of

Market Applications Development at Telerate Systems. Kelman held a variety of positions

at UNIVAC Corporation, where he worked for 18 years.

Kelman studied Mathematics at Edinburgh University.
Richard L. Gerould

Richard Gerould is the Vice President of Corporate Development for Visigenic, where he

is responsible for creating and maintaining relationships with strategic customers and sup-

pliers.

Prior to joining the company, Gerould founded and served as President of Configurex, Inc.,

a developer of object-oriented rapid development systems for distributed, cross-platform

applications. Gerould has practiced as an attorney, manager, and engineer for other promi-
nent Bay Area Firms. Before founding Configurex, Gerould was the Vice President of

Marketing Operations at Micro Focus, Inc., a company with annual revenues exceeding

$100 million. Gerould also served as the Vice President of Corporate Services during his

tenure at Micro Focus.

Gerould holds a B.A. and M.S.E.E. degree in Computer Science from the University of

California at Berkeley. He also holds a J.D. degree from Hastings College of Law in San
Francisco.

Robert Perreault

Bob Perreault is Vice President of Professional Services for Visigenic, where he is respon-

sible for the company's consulting operations. He previously served as the company's Vice

President of Research and Development.

73



Perreaulthasfifteen years of expertise in database research and development, Prior to

joining Visigenic, he held the position of Vice President of Client/Server Technology at

Compuware Corporation. He also served as Vice President of Database and Connectivity

Products and Vice President of U.S. Engineering at Uniface Corporation, which merged

with Compuware in 1994. At Uniface, Perreault helped deliver transparent access to a vari-
ety of sources through a series of network and database drivers. Previous to Uniface, Per-

reault co-founded and served as President of Data Accessibility Solutions, Inc., was Vice

President and co-founder of RIAL, Inc., and held the position of Vice President of Engi-
neering at Interactive Development Environments. He also worked in research and devel-

opment at Hewlett-Packard for ten years in the Information Technology Group and the
Corporate Administrative Systems division.

Perreault holds an M.S. degree in Computer Science from Stanford University, an M.B.A

from the University of Michigan, and a B.A. in Economics and a B.S. in Math Sciences
from Stanford University.

R_sum_s of Key Personnel Who are involved in the Product Research and Development of
the Product.

Director,

Object

Technologies

Neguine Navab

Neguine Navab is responsible for development of Visigenic's VisiBroker object request

broker (ORB) products and related object services such as naming and events.

Navab was Vice President of Product Development for PostModern Computing, which

merged with Visigenic in 1996. Prior to Visigenic, she held the role of Manager of the

Distributed Object Group (NEO) at SunSoft, where she oversaw development of the com-
munication core of Sun's ORB implementation. Navab also worked as a developer and

project lead in SunSoft's Solaris Kernel Operating System group. Prior to joining Sun Mi-

crosystems, she was with Oracle Corporation.

Director_

Engineering

Navab holds an MS in Computer Science from Stanford University and BA degrees in

Computer Science and Math from the University of Oregon.

Farid Khoujinian

Farid Khoujinian oversees the development of Visigenic's object services technology. His

Strategic Object Services group develops modular, system-level services that complement
the functionality of VisiBroker ORB products.

Khoujinian has led technical engineering and consulting engagements in all facets of the

information technology industry. Prior to joining Visigenic, he was the Director of Ad-

vanced Solutions within KPMG's Strategic Services Consulting group, where he focused

on providing solutions to clients with highly challenging development projects. He also

served as the lead architect for the implementation of Sybase's next-generation database

technology and developed the company's distributed objects and connectivity strategy.

Khoujinian earned a Ph.D. and M.S. in Electrical Engineering from Columbia University.

He received a B.S. in Applied Mathematics from Harvard University.

74



Senior Prod-

uct Manager

Geoffrey Lewis

Geoffrey Lewis is Visigenic's Senior Product Manager for object products. His responsi-

bility is managing the development and delivery of distributed object technology, including
the VisiBroker object request brokers, services, and development tools.

Lewis has 25 years of software industry experience. Prior to joining Visigenic, he held a

number of positions in the SunSoft division of Sun Microsystems. His roles there included

Manager of Strategic Alliances for SunSoft Object Products, Manager of Strategic En-

dorsements, Engineering Manager, and Project Leader. He has also held positions as Group

Manager of Database Products at Apollo Computer; Principal Software Engineer at Lotus

Development; Manager of Application Systems and Languages at Computer Consoles; and

System Architect at I.P. Sharp Associates. Lewis began his career as a lecturer for the De-

partment of Computing and Control for the Imperial College in London.

Lewis has received commendations from the Object Management Group, including a Dis-

tinguished Service Award in 1994 and OMG's f'n'st Fellows Honor in 1997.

Lewis earned an MS in Computer Science from the University of London and a Bachelor

of Science degree in Theoretical Mechanics from the University of Nottingham.

R_sum_s of Key Personnel Involved in the Professional Services Organization

Director,
Advanced

Business

Solutions

Kevin Riley

Kevin Riley's responsibilities include providing presales consultation on use and integra-
tion of the company's distributed object and data access technologies, as well as ongoing

account management duties.

D_rector_

Consulting
Services

Principal
Consultant

Principal
Consultant

Principal
Consultant

Riley has more than 20 years of experience as a computer professional. Prior to joining

Visigenic, Riley held a number of positions at New York Life, one of the largest financial

institutions in the world. Holding the position of Chief Architect, he set the company's

overall application scheme, system strategy, and technology direction. He also served as

Systems Director for the Corporate Technology Group; Systems Director for MIS Network

Support; Systems Manager for Designer Database Development and Support; Systems

Manager for CICS; IDMS Support and Application; and Systems Programmer.

Dale Lampson

Please see Appendix A 1, R6sum6s
Carlos Muchiutti

Please see Appendix A1, R6sum6s
Rama Penumarti

Please see Appendix A1, R6sum6s
Andre_as Vogel

Please see Appendix A 1, R6sum6s

75



Does it have sufficient technical staff to evolve and support the product?

Response: Visigenic is committed to continuing to evaluate its Customer Support

capabilities to ensure they continue to meet the needs of our customers' dynamic

environments. To that end, Visigenic has implemented several new programs in the

last six months which allow us to more effectively respond to the different classes of

customers we have. Visigenic is currently in the process of an independent study of

its customer base to develop additional capabitities for the coming year.

Is the company based in a stable government and economy?

Response: Visigenic's headquarters in San Mateo, California. This is in the heart

of the Silicon Valley, which is one of the richest (if not the richest) concentration

of technical companies and expertise.

How long has the company been in business and actively working with this tech-

nology?

2.3.10.3 Alacrity of the Company

How effectively can the company respond to changing needs of the industry or of its

key customers?

2.3.10.4 Dedication of the Company to the Product

• Is the company dedicated to this product as part of its long-term strategic direction?

Response:

Visigenic Strategy

Visigenic's strategy is to become the premier provider of software tools which enable

developers and IT professionals to develop, deploy and manage distributed business

applications for Internet, Intranet and enterprise computing environments. The Com-

pany's strategy incorporates the following key elements:

Support and Enhance Open Industry Standards. The Company's products are based

on existing and emerging industry standards for heterogeneous database access and

distributed object technology. The Company actively participates in standards-setting

organizations including X/Open and the Object Management Group. The Company

intends to contribute to the expansion of existing standards and the development of

future standards created by these and other standards-setting organizations. For ex-

ample, the Company was instrumental in accelerating ODBC's acceptance as a stan-

dard for heterogeneous database access by licensing certain ODBC enabling

technology from Microsoft and providing the VisiODBC SDK on Macintosh, OS/2

76



and manyUNIX platforms. In addition,the Companyhasdevelopedthe In'st com-
mercial implementationof HOPin its ORB products.The Companyintendsto con-
tinue promotingacceptanceof HOP as the de facto standardfor distributedobject
messagingfor theInternetandIntranets.

Leverage Strategic Partners. The Company intends to continue to establish close re-

lationships with leading technology companies through technology licensing, joint

development, strategic investments, and distribution and marketing arrangements to

promote the widespread acceptance and distribution of Visigenic products. Key part-

nerships include the following:

Cisco is a strategic investor in the Company and has entered into a license agree-

ment to incorporate the Company's database access products in Cisco's network

management product line.

Hitachi has entered into a joint-development agreement with the Company for the

development of a transaction-enabled ORB based on the VisiBroker for C++ and

VisiBroker for Java products and is a worldwide distributor of the VisiBroker

product line.

(> Microsoft has entered into a series of agreements to incorporate certain of the

Company's VisiODBC products with certain Microsoft products and to license to

the Company the Microsoft ODBC SDK and test suites for non-Microsoft oper-

ating systems.

Netscape is a strategic investor in the Company and has entered into a license

agreement to incorporate VisiBroker for Java into Netscape's client products,

Navigator 4.0 and Communicator, and VisiBroker for C++ into Netscape's server

products, Enterprise 3.0 and FastTrack 3.0.

Oracle has entered into a license agreement with the Company to incorporate the

Company's VisiODBC products with a number of Oracle's Transparent Gateway

products.

Platinum technology is a strategic investor in the Company and has entered into

an agreement to incorporate the Company's VisiODBC, VisiChannel and Visi-

Broker products with certain Platinum technology products.

Provide a Broad Suite of Integrated Products. The Company offers a suite of software

tools for database access and distributed objects. The Company intends to develop new

products, enhance its current products and continue to integrate its database access tech-

nology with its distributed object technology to address the requirements of the develop-

ment, deployment and management of business applications.

77



Leverage Product Sales by Providing Professional Services. To address the growing de-

mand for expertise in HOP, CORBA and the development of distributed object applica-

tions, the Company employs a staff of professional consultants and trainers who are

experienced in database access and distributed object technologies. The Company intends

to continue to develop and grow its professional service organization as a key differenti-

ating component of its sales strategy.

Maintain Technology Leadership. The Company is committed to maintaining its techno-

logical leadership through internal product development efforts and, if appropriate op-

portunities present themselves, through acquisitions of technologies, products and

companies to address the specific requirements of distributed applications in the areas of

databaSe access, distributed objects and the monitoring of distributed environments. The

Company has invested and will continue to invest in technology so that it can react and

adapt to changing technological trends and market needs.

Exploit and Develop Internet/Intranet Market Opportunities. The Company believes that

the emergence of the Internet and Intranets will significantly increase the market for data-

base access and distributed object connectivity software. Visigenic intends to leverage its

products and expertise in heterogeneous database access and distributed objects to exploit

the market opportunity for distributed applications for the Internet and Intranets.

Expand Distribution Channels Worldwide. To achieve broad distribution of its database

access and distributed object software, the Company believes it must continue to build

multiple distribution channels worldwide. The Company is expanding its direct sales and

telesales forces as well as broadening its indirect channels of distribution, including

VARs, ISVs, systems integrators ("Sis"), Internet sales and international distributors. The

Company's international distribution strategy is to penetrate key international markets by

seeking additional VARs, ISVs and regiONAl distributors and by further developing its

existing relationships with these customers.

* Is this product an acquired product that may be retooled or dropped in favor of an-

other company product?

Response: No, in fact Visigenic's focus is on the ORB. We have recently re-

engineered our ODBC server product line (VisiChannel) to utilize the ORB as its un-

derlying architecture.

• Is the company committed to the product both financially and technically and further,

do they have the resources to see through the commitment?

Response: Visigenic is total committed. The following was announced last month:

78



SAN MATEO, CA - May 5, 1997- VisigenicSoftware,Inc. (NASDAQ: VSGN),the
leaderin distributedobjecttechnologyfor JavaandtheWeb,wasnamedthefourth
fastestgrowingpublic companyin SiliconValley by TheSanJoseBusinessJournal.
Visigenicwasnamednumberfourbasedon thecompany'soutstandingaveragereve-
nuegrowthof 301percentoverthepastthreeyears,endingMarch31, 1996.For the
pasttwelvemonthsendingMarch31,1997,Visigenic'srevenueshaveincreased205
percentto $I7.0 million from $5.6million theprior year.

TheBusinessJournalincludedcompaniesbasedin SiliconValley thatwereatleast
threeyearsold at theendof the1996fiscal year. Theorganizationswererankedby
William O'Neill & Co.,Inc.usingamethodcalled"leastsquared."This processtakes
into accountbothgrowthspurtsandrevenuedrops,transformingthemintoa smooth
growth curve.

• Doesthecompanyplaya majorrolein theOMG andtheCORBA standard(e.g.,sit
on theboardof directors)?

Response:Visigenicis amajorplayerin theOMG. Jeff Mischkinskyis Visigenic's
OMG representative,this is Jeff'sfull timejob. Jeff hasbeenon theArchitecture
Boardsinceit wasformed. Heis theChairof theEnhancedPortabilityRevisionTask
ForceandIDL/JavaLanguageRevisionTaskForce.(AB membersarenot allowedto
ChairregularTaskForces).Jeff hasbeenactivein theOMG since1991. Heserved
on theOMGBoardof Directors(representingUnify andthenSybase)for several
years. Jeffwason theoriginal90-dayteamthatdeliveredtheoriginalCORBA 1
specification. Jeffwastheprimarydrafterof theCORBAComponentandCORBA
ScriptingRFP'swhicharebeingsubmittedasnewRFP'sto be issued.

Visigenicisanactiveparticipantin manyRFP's. Mostrecentlyour submissionsfor
theJavaLanguageMappingandtheCORBA SSL/SecurityServicewereadoptedby
theOMG. We arecurrentlysubmittingto thefollowing RFP's:

ObjectsBy Value,Messaging,Notification,andCom/CORBAPartB. We will be
submittingto thereverseJavaTo IDL MappingRFP

2.3.11PricingIssues

LicensingcostsareanothersignificantfactoraffectingABCD's ability to delivercost-
effectivesolutionsto theTBUs.

Pleaseindicatelicensingcostinformationrelativeto ABCD's developmentanddeploy-
mentrequirementsfor:

• SOCruntimelicenses

• Developmentlicenses

• BUSrnntimelicenses

79



• Client runtime licenses (WebServer as well as compiled client)

Response: Pricing issues will be discussed at a later time

2.3.12 Third-Party Products

We expect that CORBA-enabled COTS products will soon emerge on the market. Please

list any existing products that you are aware of, whether currently available or planned.

Also please indicate if you have any strategic arrangements with other vendors that will

impact the rate at which products integrated with your ORB are likely to enter the market.

We are particularly interested in products pertaining to Virtual Community services, De-

livery Services (Fax, Off-line Print), Electronic Commerce, and Web Server Frameworks.

2.3.13 Case Studies

Please provide case study material that will support the viability of your product for high-

volume, enterprise-strength applications.

Please include information pertaining to:

• Time-to-market

• Number of services, servers, sites, and clients

• Reliability, MTBF

• Response time

• Maintenance costs

References will be provided upon request

80





REPORT DOCUMENTATION PAGE Form_op,ov_
OMB No. 0704-0188

J,

Public reporting buskin for !his collection of infocmatio? ill utimated.to a,,_rage 1 how per ru_, includir_ the lime for Hwiewtnginstruclion$, torching exiling data sources,

gathedr_ _l.cf m_l.lrltalnlng I/lo data needed, and completing end revm,_ng U_e coHectio, I of informM_on. 3eno comments reQatdlng this burckm e__.imate or any Other aspect of this

.C_. leotlon Ot mtormation, lncludlng suggestions for reduc_g "dlts burden, to Washington Headquartm S4m_s, uir_-'torl_ e for Information Ol_tatK_s and F_llS, 1215 J_n D_vis
Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of M,_lagetn(mt and Budge(, Paperwork Fk_luct_on Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Lemveblank) i 2. REPORT DATE

May 1998
4. TITLE AND SUBTITLE

Aviation System Analysis Capability Executive Assistant Design

6. AUTHOR(S)

Eileen Roberts, James A. Villani, Mohammed Osman, David Godso,

Brent King, and Michael Ricciardi

7. PERFORMINGORGANIZATIONN/_IE(S)ANDADDRESS(ES)

Logistics Management Institute
2000 Corporate Ridge
McLean, VA 22102-7805

9. SPONSORING/ MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NAS2-14361
Task 97-01

WU 538-08-11.01

I 8. PERFORMING ORGANIZATION
REPORT NUMBER

NS701S1

'10. SPONSORING I MoNrroRING
AGENCY REPORT NUMBER

NASA/CR- 1998-207679

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Robert E. Yackovetsky
Final Report

12a. DISTRIBUTION/AVAILASILITY STATEMENT

Unclassified - Unlimited

Subject Category 01

Availibility: NASA CASI (301) 621-0390

Distribution: Nonstandard

121). DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 worda)

In this technical document, we describe the design developed for the Aviation System Analysis Capability
(ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC
system, discuss the objectives of the ASAC system and provide an overview of components and models within
the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We
also describe the evaluation process and results for applicable COTS software. The document has six chapters,
a bibliography, three appendices and one attachment.

14. SUBJECT TERMS

ASAC, NASA, Design, Executive Assistant

17. SECURITY CLASSIRCATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIRCATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

211

16. PRICE CODE

A10

20. LIMITATION OF ABSTRACT

Unlimited

Standerd Form 298 (RIv, 2-89)
Pm_icdbed by ANSI Std. Z39-18

296-102


